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Research Objectives: 

Obtain a deeper understanding of the fundamental physics of turbulent flows subjected to mean 
three-dimensionality, with an eye toward improving the accuracy of the engineering turbulence 
models used to predict them. 

Science &: Technology (S&T) Objectives: 

1) Investigate the effect of various three-dimensional mean-flow perturbations ('extra strains') 
upon the structure and statistics of turbulent boundary layers. 

2) Provide an extensive high-quality turbulence modeling database, which can be used to test 
and develop large-eddy simulation and Reynolds-averaged closures. 

Summary: 

Direct numerical and large-eddy simulations were used to perform 'numerical experiments' rel- 
evant to the cases of interest. We employ a plane-channel geometry and impose mean-flow per- 
turbations by subjecting fully developed 2D Poiseuille flow to irrotational deformations and/or 
in-plane motion of the channel walls. The former corresponds to outer-layer strains induced 
in boundary layers by pressure gradients, the latter to sudden variations in the near-wall re- 
gion, caused by either step changes in the surface conditions or the combination of an outer-layer 
change and the no-slip boundary condition. This combination allows the physics of a broad class 
of spatially developing wall shear layers to be duplicated with a temporally evolving channel 
flow. The temporal computations can be realized much more effectively than can simulations 
of a spatial boundary layer, providing a much more extensive study for a given cost. As a 
consequence, we can consider a wide variety of mean-flow perturbations. Moreover, since mean 
statistics for these flows satisfy a one-dimensional unsteady problem that contains the essential 
features of the spatial flow, they provide an efficient means of testing one-point closure models. 

We have been able to understand and explain a range of 2D and 3D extra-strain effects - some 
of which are counter-intuitive and difficult for current turbulence models to duplicate - while 
creating an extensive set of unique and valuable turbulence modeling data. Further details of 
our findings are described in the attached papers. 
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Channel flow, initially fully developed and two-dimensional, is subjected to mean 
strains that emulate the effect of rapid changes of streamwise and spanwise pressure 
gradients in three-dimensional boundary layers, ducts, or diffusers. As in previous 
studies of homogeneous turbulence, this is done by deforming the domain of a 
direct numerical simulation (DNS); here however the domain is periodic in only 
two directions and contains parallel walls. The velocity difference between the inner 
and outer layers is controlled by accelerating the channel walls in their own plane, 
as in earlier studies of three-dimensional channel flows. By simultaneously moving 
the walls and straining the domain we duplicate both the inner and outer regions 
of the spatially developing case. The results are used to address basic physics and 
modelling issues. Flows subject to impulsive mean three-dimensionality with and 
without the mean deceleration of an adverse pressure gradient (APG) are considered: 
strains imitating swept-wing and pure skewing (sideways turning) three-dimensional 
boundary layers are imposed. The APG influences the structure of the turbulence, 
measured for example by the ratio of shear stress to kinetic energy, much more than 
does the pure skewing. For both deformations, the evolution of the Reynolds stress 
is profoundly affected by changes to the velocity-pressure-gradient correlation 77,7. 
This term-which represents the finite time required for the mean strain to modify 
the shape and orientation of the turbulent motions-is primarily responsible for the 
difference (lag) in direction between the mean shear and the turbulent shear stresses, a 
well-known feature of perturbed three-dimensional boundary layers. Files containing 
the DNS database and model-testing software are available from the authors for 
distribution, as tools for future closure-model testing. 

1. Introduction 
The subject of this study is turbulent three-dimensional boundary layers (3DBLs), 

that is boundary layers with mean velocity profiles that change direction with distance 
from the surface. As a consequence, the mean velocity and mean vorticity are not 
everywhere orthogonal as they are in two-dimensional boundary layers. Our objective 
is to better understand the non-equilibrium case, where the 3DBL is created by 
an abrupt mean-flow perturbation. (We shall use 'perturbed' and 'non-stationary' as 
synonyms for the traditional meaning of non-equilibrium, to describe a flow subjected 
to a rapid change of the mean field to which the turbulence has not yet adjusted.) 

t Present address: School of Engineering Sciences, Aeronautics and Astronautics, University of 
Southampton, Highfield, Southampton SO 17 1BJ, UK. 



76 G. N. Coleman, J. Kim and P. R. Spalart 

These flows are abundant in both meteorology and engineering (Smits & Wood 1985). 
Although stationary 3DBLs (such as the Ekman layer) are not without importance 
and physical complexity (see e.g. Spalart 1989; Littell & Eaton 1994; Wu & Squires 
1997; Coleman 1999), it is the transient response of the turbulence to an impulsively 
imposed mean deformation that is the most challenging to understand, and is the 
subject of this investigation. Specifically, we examine the transition of a statistically 
stationary two-dimensional incompressible turbulent flow to non-stationary states 
created by sudden application of three-dimensional mean strains. The focus here is 
upon the resulting statistics (rather than the behaviour of the instantaneous coherent- 
structurest), with an eye toward improving the performance of one-point turbulence 
models. Similar, less thorough, presentations of this work have appeared in Coleman, 
Kim & Spalart (19966, 1997). 

Since turbulence is inherently unsteady and three-dimensional, it might seem reason- 
able to assume that the three-dimensionality of the mean flow is irrelevant. Turbulence 
in perturbed 3DBLs would then be a simple extension of that found in stationary two- 
dimensional or three-dimensional boundary layers. It is not. There is now abundant 
evidence that suddenly adding mean three-dimensionality to a flow alters its character. 
(Reviews of stationary and perturbed turbulent 3DBL experiments and simulations 
can be found in Fernholz & Vagt 1981; van den Berg et al. 1988; Schwarz & Brad- 
shaw 1994; Eaton 1995; or Johnston & Flack 1996). As an example, when a fully 
developed two-dimensional boundary layer is suddenly subjected to a spanwise mean 
shear by the impulsive motion of the surface, the flow often experiences a decrease 
of turbulent shear stress and drag (Moin et al. 1990; Jung, Mangiavacchi & Akha- 
van 1992; Laadhari, Skandaji & Morel 1994; Coleman, Kim & Le 1996a). Because 
addition of mean shear usually causes the turbulence to become more energetic, this 
behaviour is difficult to explain (and predict). We hope to clarify this phenomenon. 

When the crossflow appears not because of applied surface shear but as the result 
of a spanwise pressure gradient, such as that found in a curved duct, upstream of a 
blunt obstacle, or over a swept wing, the 'streamwise component' of turbulent shear 
stress, —MV, near the wall again tends to decrease (Bradshaw & Pontikos 1985); away 
from the surface, however, the stress typically increases (Pierce & Duerson 1975; 
Anderson & Eaton 1989; Schwarz & Bradshaw 1994; Ölcmen & Simpson 1995), 
presumably due to the outer-layer deformation associated with the mean streamwise 
pressure gradient. (More on this point below.) The suddenly distorted 3DBL therefore 
demonstrates a complexity associated with all perturbed boundary layers, in that the 
regions away from and very near the wall are dominated by separate inner- and 
outer-layer dynamics (Smits & Wood 1985). 

Mean three-dimensionality is most fundamentally quantified not by the mean 
crossflow but by the non-zero mean streamwise vorticity associated with the mean 
spanwise shear dW/dy. (The x, y, and z coordinates, with corresponding U, V, and 
W velocity components, are used throughout to respectively denote the streamwise, 
wall-normal, and spanwise directions, with respect to a two-dimensional reference flow 
for which W is identically zero. In other coordinate systems non-zero dW/dy might 
simply correspond to a two-dimensional flow directed away from the x-axis, and 
therefore not necessarily represent a lack of orthogonality of the mean velocity and 
mean vorticity, as it does here.) In the course of examining the impact of mean-flow 
changes upon the inner and outer regions, it is useful to differentiate between two types 

t The effect of mean three-dimensionality upon the near-wall turbulence structures has been 
studied by Sendstad & Moin (1992), Littel & Eaton (1994), Kang, Choi & Yoo (1998), Le, Coleman 
& Kim (1999), Kiesow & Plesniak (1999), and Le (1999). 
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of perturbed 3DBL found in practice, according to the manner in which mean three- 
dimensionality (that is, dW/dy) is introduced to the flow. In the first, the pressure- 
driven variety,! dW/dy appears in the outer layer because of inviscid skewing arising 
from streamwise variations of the mean spanwise pressure gradient. Mean streamwise 
vorticity (i.e. dW/dy) is induced by the irrotational strain dW/dx = dU/dz (such that 
Qy = 0) which 'scissors' (rotates in opposite directions) the mean velocity U and mean 
vorticity Q vectors in the streamwise-spanwise (x,z) plane: the initial spanwise mean 
vorticity {dll/dy) is redirected such that it has a streamwise component (dW/dy) 
(Bradshaw 1987); see figure 3(a) below. This case includes the curved-duct, blunt- 
obstacle, and swept-wing experiments mentioned above. The other type of perturbed 
3DBL is the mean-shear-driven version, for which spanwise shear is generated in the 
inner layer by a step change in surface conditions. The rotating-cylinder experiments 
of Furuya, Nakamura & Kawachi (1966), Lohmann (1976) and Driver & Hebbar 
(1991) (which involve longitudinal flow along the cylinder recovering from or first 
encountering a rotating section) fall into this category, as do the plane spanwise- 
moving-wall studies of Moin et al. (1990), Sendstad & Moin (1992), Jung et al. (1992), 
Laadhari et al. (1994), Howard & Sandham (1996), Coleman et al. (1996a), Kiesow 
& Plesniak (1999), and Le (1999). Our interest here is in the pressure-driven case, 
but we will still have occasion to consider shear-driven effects. Even in pressure- 
driven 3DBLs, near the surface dW/dy is created by a shearing force, as the no-slip 
boundary condition affects the accelerating spanwise flow (figure lb). Consequently 
outer-layer strains contain both irrotational and vortical components (representing 
respectively the direct and indirect effect of the skewing), while those near the surface 
(where skewing is negligible) are essentially vortical (i.e. rotational). That both types 
of 3DBL experience mean spanwise shear near the wall raises the possibility that the 
near-wall physics of the two flows are similar-which would explain the inner-layer 
reduction of -7777 mentioned above, observed in 3DBL experiments with and without 
a spanwise pressure gradient. Addressing this issue is another goal of this work. 

A consistent trend in all perturbed 3DBLs is a reduction of the ratio of the mag- 
nitude of the Reynolds shear stress to the turbulence kinetic energy, compared to the 
initial equilibrium two-dimensional state. As pointed out by Schwarz & Bradshaw 
(1994), this alteration of the statistical structure of the flow implies that the turbulence 
becomes less efficient in extracting energy from the mean after dW/dy has appeared, 
presumably as the result of the imposed strain deforming the turbulent eddies com- 
pared to the natural shape that they develop in two-dimensional flow. However, other 
types of outer-layer strains - notably those due to adverse pressure gradients (APGs)- 
are also known to diminish the stress/energy ratio (Nagano, Tagawa & Tsuji 1991; 
Spalart & Watmuff 1993; Coleman et al. 1997). Further complicating the picture 
is the fact that most (if not all) practical 3DBLs are subject to a combination of 
spanwise (inviscid skewing) and streamwise (APG) strains, so it is hard to distinguish 
between stress/energy ratio reductions that are caused by streamwise deceleration 
and those due solely to mean crossflow. Schwarz & Bradshaw addressed this chal- 
lenge by designing an experiment in which the streamwise pressure gradient dP/dx 
was minimized along the centreline of their curved wind tunnel; since they found 
a reduction of the stress/energy ratio in the centreline plane, it appears that mean 
spanwise shear (either in its near-wall form, or because of the outer-layer skewing) 
is sufficient to modify the turbulence structure. However, since dP/dx is non-zero at 
spanwise locations on either side of the centreline in the Schwarz & Bradshaw flow, 

t Also known as skew-induced, or Prandtl's first kind of secondary flow (Bradshaw 1987). 
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FIGURE 1. Non-stationary spanwise (lateral) mean velocity profiles in three-dimensional bound- 
ary layers, (a) Mean-shear-driven case: lateral flow created by surface moving with velocity Ws. 
(b) Pressure-driven case: lateral flow is an indication of non-zero dW/dx, which is created directly 
by spanwise mean pressure gradient dP/dz (cf. figure 3a). In the outer layer spanwise shear dW/dy 
is due to inviscid skewing of dU/dy; in the inner layer dW/dy is caused by the no-slip condition 
on W. (Thickness of streamwise boundary layer denoted by dx.) 

the possibility of the turbulence being affected by non-skewing deformations cannot 
be entirely ruled out. Moreover, the experimental findings of Gleyzes et al. (1993) and 
Webster, DeGraaff & Eaton (1996) (who respectively studied flows over a finite swept 
wing and a swept bump) suggest that pressure-driven 3DBLs may be much more 
sensitive to APG-induced strains (streamwise deceleration dU/dx < 0 and/or wall- 
normal divergence dV/dy) than to dW/dy. In what follows we attempt to quantify 
the ability of the mean skewing- and normal-strain components to separately alter 
the 3DBL turbulence. 

Another ambiguity we hope to help resolve is that surrounding the development 
of the turbulent shear stresses in perturbed 3DBLs. A well-known feature of both 
the shear- and pressure-driven flows is the tendency for the stresses to lag behind the 
mean shear: the 'spanwise' component — v'w' grows very slowly (Bradshaw & Pontikos 
1985; Driver & Hebbar 1987, 1991), and the spanwise-to-streamwise shear-stress 
ratio v'w''/«V is usually much smaller than the corresponding mean velocity-gradient 
ratio, (dW/8y)/(dU/8y). This lack of alignment between the Reynolds stress and 
mean shear also exists in stationary 3DBLs (see for example figure 14 of Coleman, 
Ferziger & Spalart 1990) but is generally largest immediately after dW/dy appears 
in an initially stationary two-dimensional flow, as the inertia of the turbulent motions 
prevents them from instantly realigning with the direction of the new mean strain. The 
stress/strain misalignment cannot be captured by any turbulence model that assumes 
an isotropic (scalar) eddy viscosity, and thus represents a clear-cut inconsistency 
for many popular turbulence model closures. To overcome this difficulty one must 
understand which terms in the Reynolds-stress transport equation are responsible 
for slowing the growth of — v'w', and how those terms are affected by various mean 
deformations - two objectives that are undertaken below. 

Each of the issues outlined above is addressed by employing direct numerical 
simulation (DNS) of a parallel-flow approximation to the 3DBL; as explained in §2, 
we associate changes in time of a three-dimensional wall-bounded shear flow (3DWL, 
for 'three-dimensional wall layer') with convective changes of the spatially developing 
case of interest. Although we do not exactly recreate any existing experimental flows 
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using this approach, we can duplicate their defining features and connect various 
causes and effects in a straightforward manner. Other advantages and limitations are 
detailed below. The aims of this paper are to motivate and describe the numerical 
approach, apply it to two three-dimensional cases, and determine the general physical 
and modelling implications of the results, especially regarding the issues just discussed. 
Testing of specific turbulence models is deferred to future studies. 

After introducing and formulating the strained-channel approach in the next sec- 
tion, the physical and numerical parameters used to obtain the DNS results are 
given. Two cases are simulated, one corresponding to a pressure-driven 3DBL with 
no APG, the other to the decelerated and skewed boundary layer over a 45° infinite 
swept wing. We examine the temporal evolution of the mean statistics and Reynolds- 
stress budgets in § 3, finding that 3DWL turbulence is much more sensitive to mean 
streamwise-deceleration strains than it is to the mean spanwise shear. The critical role 
played by the velocity-pressure-gradient terms 77,7 (see equation (3.2) below) in the 
evolution of the Reynolds-stress budgets is also documented. Finally, closing remarks 
are presented in § 4 regarding the broader implications of this study. 

2. Approach 
2.1. Overview 

We create a perturbed 3DWL by imposing a mean strain rate and a change of the 
driving pressure gradient upon turbulence that had previously been in a statistically 
stationary state. Incompressible turbulent two-dimensional plane channel flow is 
subjected to spatially uniform divergence-free irrotational distortions characteristic of 
those induced in the outer region of turbulent boundary layers by pressure gradients. 
Solutions are obtained using DNS to resolve all relevant scales of motion, so no 
turbulence or subgrid-scale model is needed. 

This strained-channel strategy is based on the observation that the pertinent charac- 
teristic of the pressure-driven boundary layer is not the pressure gradient as such, but 
the mean strains (such as the dW/dx = dU/dz skewing, and dU/dx = -dV/dy < 0 
deceleration) that they cause. We utilize a three-dimensional flow domain that is 
spatially periodic in the streamwise x and spanwise z directions and has two no-slip 
plane walls, and approximate the real spatially developing problem with a temporally 
evolving one. The channel turbulence is subjected to mean-flow variations in time 
that correspond to convective changes experienced by the turbulence in a boundary 
layer. The defining features of spatially developing pressure-driven shear layers are 
thereby captured in a wall-bounded flow that maintains its streamwise and spanwise 
homogeneity. When averages are discussed we use U and w respectively to denote 
the imposed deformations, and the temporally evolving profiles in the channel (sam- 
pling over the directions parallel to the walls, and referring velocities to the local 
wall value). The streamwise/spanwise homogeneity is the reason explicit strains must 
be added to emulate the pressure-driven flow. Merely applying a spanwise pressure 
gradient (which is uniform in space by definition) in the channel results in a purely 
shear-driven 3DWL (cf. Moin et al. 1990)-since the effect of a spatially uniform 
pressure gradient in one direction is equivalent to an acceleration of the channel 
walls in the other (Sendstad & Moin 1992). (The distinction between previous and 
present three-dimensional channel flows is thus illustrated in figure 1: the shear-driven 
case (figure la) corresponds to the spanwise pressure-gradient/moving-wall DNS of 
Moin et al. (1990) and Coleman et al. (1996a), the pressure-driven case (figure lb) to 
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the present simulations.) A primary test of the correctness of this approach will be 
verification that the outer-layer mean velocity profiles evolve according to the Squire- 
Winter-Hawthorne (SWH) criterion in the appropriate limits! (Squire & Winter 1951; 
Hawthorne 1951, 1954; Bradshaw 1987). 

The imposed strain field is given by the divergence-free irrotational deformation, 

„   -dUi dU/dx        0        dU/dz 
0        dV/dy        0 

dW/dx       0       dW/dz 
(2.1«) 

where 

da = ^ii + ^22 + ^33 = 0,    and    s#n = ja/3i- (2Ab,c) 

This form is chosen so that the y (wall-normal) direction is a principal axis of the strain 
tensor (hence the four zeros in (2.1a)). Because of the irrotationality constraint (2.1c) 
the imposed mean strain 5^,7 = ±(jaf,7 + s/ji) is equivalent to ^u. Each component 
stij is assumed to be a function of time only, and therefore uniform in space. 
Spatial uniformity of sty in the streamwise and spanwise directions is consistent with 
homogeneity. The lack of y dependence maintains a rectangular domain, as required 
by the code. We use only simple time histories here, in which the strain is off until 
time zero and constant from then on. (A broader range of perturbed flows could also 
be considered simply by imposing a series of distinct d sty/dt = 0 phases one after 
the other, or by suddenly removing the constant strain and examining the return 
toward the fully developed two-dimensional state. When less-sudden perturbations 
are desired, the strain rate could be gradually applied, with for example J/I;- increasing 
smoothly from zero at t = 0 to an asymptotic value at finite time.) The strain supplies 
a continuous source of momentum and energy to the flow, as well as a redistribution 
of energy between components (see equations (2.7a), (2.10a) and (3.3/?) below). 

There are three independent strain parameters in (2.1a). The rates of stretching or 
compression in the wall-normal direction y and in two mutually orthogonal directions 
in the (x, z)-plane all sum to zero, thus defining the first two parameters. The third is 
the orientation (defined by the 'angle of sweep'-so termed for reasons given in the next 
section) of the horizontal stretching/compression axis with respect to x, the direction 
of the initial two-dimensional flow. When this angle is zero, the (x,z) coordinates 
coincide with the principal axes of the horizontal plane strain, and s/13 = sfu = 0. 
Although these three outer quantities, which are associated with the distorting or 
warping influence of the mean pressure gradient, completely determine the behaviour 
of the flow away from the surface, there are two more parameters needed in order 
to fully represent the impact of pressure-gradient V0> variations. They quantify the 
'bulk' effect of V0* as it accelerates/decelerates the core of the channel flow, which in 
turn creates a viscous internal layer at the surface that diffuses into the outer layer as 
the flow develops (Smits & Wood 1985; Bradshaw 1987). A description of these two 
inner parameters follows. 

The relationship between the temporally evolving and spatial flows is quantified by 
defining a vector £/avg = {Uavg, Wavg) that is representative of the mean velocity in 
the outer layers of both flows. The time derivative of our flow, d/dt, approximates 
the material derivative U&vgd/dx + Wavgd/dz in the spatial case. We further associate 
the three straining parameters in (2.1a), s/n, J^33, and sfn = stiu with the strains 
imposed in the free stream of the 3DBL, dUx/dx, dWm/dz, and dV^/dz = dW^/dx, 

t The agreement cannot be exact, since only inviscid terms enter the SWH prediction. 
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respectively. We assume that the strain rates in the outer layer of the 3DBL are 
close to those in the free stream, which is justified by their relatively large magnitude 
(compared to the outer-layer shear, or equivalently the timescale of the large eddies) 
and the small defect found in practice particularly at high Reynolds numbers; in 
other words (U avg^ " avg )™(U<a,Wa>). 

Each point of the flow volume is affected by the strain (see figures 3c and 14c). 
We are distorting the fluid and the computational box consisting of the periodic 
boundaries in x and z, and the two walls at y = ±S(t), where 8 is the channel 
half-width, which when J/22 + 0 is a function of time. Physically the channel walls 
have become elastic impervious membranes, which remain plane and parallel and 
continue to enforce the no-slip condition. The fact that the walls are elastic slightly 
obscures the comparison between the near-wall regions of the present and actual 
pressure-driven boundary layers, making this study most relevant to the behaviour of 
the outer layer. But since typical 3DBL strains are weak compared with the shear rate 
near the wall (and therefore the inverse of the turbulence time scale), it is possible to 
draw conclusions about the near-wall layer as well. 

It is helpful to differentiate between the irrotational and vortical mean fields. The 
former is prescribed solely by s^u, while the latter is due to wall-normal variations 
of the mean streamwise ü and spanwise w velocity between the walls: 

Kj = 
li 

0 
0 

j/22 

31 0 

13 

0 
;33 

+ 
0 i.3 57 

\du/dy 0 
du/dy 

dw/dy 

0 
\dw/dy (2.2a) 

but Q = Vx ([/ + «) is 

a = 
dw/dy 

+ | 0 1=0),. 
—dü/dy 

(2.2b) 

where ü>, = e^düt/dxj. We are free to choose the three independent components 
of the irrotational term in (2.2a) (in the sense that it is realistic to drive theJLow 
with pressure gradients), but not the two wall-normal gradients dü/dy and dw/dy 
(which obey the vorticity transport equation). In the outer layer the correct vorticity 
history is induced by sty, via inviscid skewing for example. However, because of the 
lack of y variation of the applied straining field, the inviscid-skewing mechanism and 
the other outer-layer strains will be active over the entire flow, all the way to the 
wall, where they are too weak to be relevant in practice. In order to also obtain the 
correct near-wall shear histories the walls are accelerated in the (x,z)-plane such that 
the difference between the mean streamwise and spanwise velocities at the channel 
centreline and the wall varies in time at the same rate that the outer-layer velocity in 
the spatial flow changes as it convects downstream. 

The temporal/spatial analogy is completed by equating the free-stream (edge) 
velocity of the boundary layer with the difference between the mean centreline 
velocity of the channel (üc,wc) and the wall velocity (uw,ww), and posing that that 
difference Aüc evolves as 

dAuc 

~df 
dAwc 

= UC 
dU« 
dx 

+ W0 1 dz 
= Aucstfn + Awcsäu, 

t)W dW 
a     = uj^ + Wx^ = Auc^n + AWC^33, 
dt dx dz 

(2.3a) 

(2.3ft) 
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where Awc = (AMC,AWC), with Aüc = üc — uw and Avvc = wc — ww. The histories of 
the two components of this velocity difference represent the final two (the inner 
or bulk acceleration/deceleration) independent perturbation parameters mentioned 
above. Their role is to ensure that C/avg — uw changes in time in the strained channel 
much as it does in the downstream direction in the spatially developing flow, so that 
the appropriate inner layer (i.e. near-wall shear) will result. Since the mean shear near 
the wall is typically much greater than J/(;- (whose magnitude is set by the outer-layer 
strain), the accelerating walls are able to duplicate gross mean-flow features of the 
near-wall region, such that realistic 3DWL velocity profiles are obtained over the 
entire channel (see figures 4 and 15 below). 

The strategy outlined above allows us to systematically approximate spatial 3DBLs 
with a temporally evolving channel flow. Channel simulations are much more efficient 
than those of a spatial boundary layer, allowing a much more extensive study for 
a given cost. Advantages include being able to use fully developed two-dimensional 
channel flow as a single clearly defined initial condition, and thus to avoid the ambigu- 
ity of often-troublesome inflow and outflow conditions. Obtaining the Reynolds-stress 
tensor and budgets is easier from a programming point of view, and having two spatial 
averaging directions more than offsets the loss of homogeneity in time, when it comes 
to obtaining statistical samples. Spatial simulations require much larger streamwise 
domains, which are costly both in terms of memory and of time required to reach 
steady state (Spalart & Watmuff 1993; Spalart & Coleman 1997). Also, ensemble 
averaging can be applied over the two halves of the channel and further samples 
can be gathered by starting the distortion at different times of the two-dimensional 
simulation (Moin et al. 1990) or by applying it in the opposite direction. Another 
benefit is the generality: combinations of distortions and wall-velocity histories can 
be arranged to isolate pure straining effects, two-dimensional or three-dimensional, or 
to closely approximate deformations experienced by the near-wall and outer regions 
of a wide range of boundary layers. The generality of most spatial DNS studies 
is constrained by their homogeneity in the spanwise direction. A final advantage is 
that the simulation statistics depend only on time and the wall-normal coordinate 
y, which implies that an unsteady one-dimensional problem can be used to investi- 
gate 3DBL physics and to test and develop turbulence models for various spatially 
evolving flows. Reynolds-averaged solutions can be obtained rapidly from a personal 
computer. 

2.2. Problem formulation 

An incompressible flow with velocity fri{i= 1,2,3) and pressure & is considered in an 
orthogonal reference frame x = (xi,x2,x3) = (x,y,z). The approach is similar to that 
of Rogallo (1981) (see also Lee & Reynolds 1985), except that instead of distorting 
spatially homogeneous turbulence //(x, t), here the flow u(x, t) is between two no-slip 
surfaces and will contain both fluctuations ü{x, t) and an inhomogeneous mean H(y, t). 
Rogers (2000) has also performed a homogeneous-strain/inhomogeneous-flow DNS 
study, for a free shear flow. 

The numerical code uses coordinates x* = (x\,x*2,x'2) = (x*,y*,z*) aligned with the 
principal axes of the deformation tensor s/jj, so that 

an*       [ <i      °        0 
^' = °-^L=       0      ^'22      0       , (2.4) 

dxj        o     o    J^;3 



Strained three-dimensional wall-bounded turbulence 83 

with s/'i = 0. We have 

x* = x cos a — z sin a,    y* = y, zcosa + XS1IKT, (2.5a) 

where x = (x,y,z) are the 'downstream coordinates' (x is the initial stream wise 
direction of the two-dimensional channel flow), and equivalent relations for the 
velocity components. The angle a is defined as positive when clockwise (i.e. from x 
toward z - see figure 3c). Because of its meaning over swept wings (which nominally 
impose a strain at a right angle to their leading edge; Bradshaw & Pontikos 1987), a 
will be referred to as the angle of sweep. We have 

IS/M = si*u cos2 a + s$\> sin2 a, (2.5b) 

< 22 — J* 22' 

,2,   ,    „,.   „„„2. 

(2.5c) 

j/33 = J/,, sin2 a + j/33 cos2 cr, (2.5d) 

j/13 = j/31 = — J/JJ cos <7 sin a + s/'3 cos <x sin a. (2.5e) 

As mentioned above, there are three independent strain parameters: a and any two 
of j/'n, s?*22 

and ^33> with tne third following from sf'u = 0. With respect to the 
downstream axes, the independent parameters are s/i3 and any two of s/n, s$?i and 
^33- 

The straining is imposed for t ^ 0 and the initial condition at t = 0 is fully 
developed turbulent plane channel flow. At t = 0 the flow becomes 

Tr,(*.t) = M*,0+^(*,0, (2-6) 

and the pressure ^ changes from p to p + 2L. The imposed deformation field Ut varies 
linearly in space according to Ui(x, t) = j/,7(t) Xj, where the spatially uniform velocity 
gradient j/y is given by (2.1), and each component is a function solely of time. 

The DNS domain is aligned with the principal axes of the superimposed strain, 
with the walls at y' = y = +5. When a^Oa 'swept' initial condition is used; that 
is the initial two-dimensional flow direction is oriented at the angle a with respect to 
the x*-axis (cf. figure 3c below), by specifying that the z*-component of the bulk mass 
flux be non-zero. (The initial conditions are obtained by running the strained-channel 
code with no strain, as a conventional Poiseuille DNS.) Each component of u is 
required to satisfy the no-slip condition u = uw at y = ±5, where uw = (w^,,0, w*) is 
the velocity of the walls. 

As a result of (2.6), the 'embedded' wall-bounded flow u* will be strained at the 
rate £/"u = \(s/'j + j/'ß) = jtf'j, and will satisfy 

du'i   ,    •„/•   ,    *du'i 8P 
dt 'dx* dx* app 

d£ 
dx* 

+ 1    d2u* 
Re dx'dx'j ^Hxe^-.       (2-7a) dx 

and 
du' 
dx* 

= 0. (2.76) 

All variables in (2.7) are non-dimensionalized by the initial channel half-width 5(0) 
and a reference velocity C/ref (which here will be of the order of the initial friction 
velocity wT(0)). The reference Reynolds number is Re = C/ref<5(0)/v, where v is the 
kinematic viscosity, and p is the non-dimensional kinematic pressure, which we have 
decomposed into its mean p and fluctuating component p'. The quantity dp/dx'\app is 
the applied mean pressure gradient, a time-dependent, spatially uniform body force. 
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The momentum contribution for the imposed field was removed from (2.7a) because 
it is curl-free: 

(IT + «?*•») - (IF+^*•—&• (2'8) 

and is attributed to a pressure field 2., which is quadratic in space. 
Following Rogallo (1981) we now introduce the coordinates 

£,= <%(£) x},    T=t, (2-9fl) 

defined by the transformation ;% subject to the constraint that the new spatial 
variables (^1,^2,^3) be material properties of the imposed strain flow: 

or 
iJ+au^j = 0, (2.9b) 

dt 
and @ij(0) = öij. This choice for (2.9) removes the secular term (explicitly containing 
x*) from (2.7a) and thus allows periodic conditions in planes parallel to the walls. 
The distance (measured in x*) between lines of constant & indicates the total amount 
of deformation produced by s/'tJ. Transforming (2.7) from (x*,r) to (£,-,?) coordinates, 
and using (2.9b), gives 

out       .  *'       .^1   Sut SP 
dt       '    '      '    'Ht Sxt app 'W,     Re   'J   nJdZ,dZ„ *« TT + T a'Ja"J ^rir    {2A0a) 

and 

^M=0, (2A0b) 

which are subject to the boundary conditions u = uw at £2 = ±1. The form of (2.10) 
is identical to that for simple Poiseuille flow, except for the time-dependent metric 
terms MV} multiplying each spatial derivative, and the st- term on the left-hand side. 
It is, however, important to bear in mind the new significance of the unsteady term 
in (2.10a), which now indicates the temporal change at fixed &(**,£) = @ij(t)Zj(x',0) 
(rather than at fixed x*). For modelling studies, the Reynolds-averaged equations can 
be deduced from (2.10a). 

To solve (2.10) a closed-form expression for the coordinate-mapping function ^tj(t) 
is required. Limiting our attention to the special case of constant strain rate, for which 
dst'ij/dt = 0, we have for the solution of (2.9ft) 

^ij(t) = 

exp(-^'nt) 0 0 
0 exp(-ja/22f) ° 
0 0 exp (-J/33C) 

(2.11) 

Applying (2.11) to (2.9a) reveals the histories of the channel half-width, 

ö(t) =5{0)exp(s/'22t), (2.12a) 

and of the horizontal domain sizes Ax- and Az- in the x*- and z*-directions, 

Ax-(t) =Ax.(0)exp(sf'nt)       and       A2-(t) = Az-{0) txp(s/'33t). (2.12ft,c) 
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Equation (2.12) shows how the DNS domain deforms when s/'j is constant in t. 
(Recall that other straining histories are possible.) 

We now consider the wall-velocity histories uw(t) needed to control the temporal 
evolution of the rotational mean-velocity gradients near the walls. As explained above, 
this is done by ensuring that the centreline-wall mean velocity difference A«c* satisfies 
equation (2.3), which in principal-strain axes reduces to 

^=A«>;„ (2.13a) 

^=Aw;^3, (2.13ft) 
at 

with Aü* = ü* — uw and Aw* = w* - w*. The simplest way to enforce (2.13)- 
the approach used to generate the results presented below-is to monitor the mean 
centreline velocity and adjust u'w according to 

ujt) = ü*c{t) -s;(0) exp^r), (2.14a) 
w*w(t) = w;w -w;(0) exp (j/;3t), (2.14*0 

where ü*(0) and w*(0) are the initial mean centreline velocities, the values at the 
instant the strain is imposed. We notice that the wall velocities explicitly depend 
on jäij and t through the exponential terms in (2.14). (They are also affected by 
the influence of say on Tic.) During the computation the centreline values from the 
previous timestep are used to prescribe the wall velocities needed to calculate the 
current step. 

More-empirical approaches can also be taken to specify «*. and w*. The one used 
for our earlier finite-^/n DNS results (Coleman et al. 1996ft, 1997) was based on 
closing the inner leg of the mean velocity hodograph. While this more ad hoc method 
successfully causes the mean spanwise velocity profile w(y) to develop in time as it 
should (see figure 2 of Coleman et al. 1997), control of the streamwise component 
w is less satisfactory, especially when normal-strain components are applied, which 
prompted us to employ the simpler and more rigorous formulation (2.14) for the 
present simulations. As we shall see below, since it yields centreline-wall velocity 
histories in close agreement with both (2.13a) and (2.13ft), equation (2.14) produces 
streamwise and spanwise velocities that both evolve as the spatial-temporal analogy 
requires. 

To complete the problem formulation we describe the behaviour of the pressure 
gradients V*p|app = (dp/dx*,0,dp/dz')app that appear on the right-hand sides of 
(2.7a) and (2.10a). Before the stf'j strain is applied, they balance the mean wall-shear 
stress in the average. They can be constant in time (allowing temporal fluctuations 
of centreline velocity and total mass flux), or dynamically adjusted to keep the mean 
centreline velocity constant (which would be most consistent with our approach 
during the strain), or dynamically adjusted to keep the total mass flux constant. We 
use the third procedure, since it causes the two-dimensional statistics to converge 
more rapidly (Kim, Moin & Moser 1987). In the limit of an infinitely large domain 
(for which fully converged statistics would result from a single plane average) the 
three approaches would give identical results. Because the governing equations are 
invariant under streamwise and spanwise accelerations, whether we use V*p|app or 
u*w to control the velocity difference between the outer layer and the channel walls is 
irrelevant. Once the strain is applied, we specify ATI* via (2.14), and set and maintain 
V*P lapp equal to zero. 



„5(0) M(0) ^22<5(0)M(0) s/i3ö(0)/ut 

0 0 0 
-0.735 +1.47 -0.735 

AT-/ö(0)         mx-         my-         mz-         nx- 'V >V 

8ic/3           256        129        256        384 129 384 

TABLE 2. Numerical parameters. 
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Case        .^3(5(0)/ur(0) 
S45 0.735 
AS45 0.735 

TABLE 1. Parameters for the two straining cases. 

Ax-/S(0) 
8it/3 

Solutions to (2.10) are obtained using a modified version of the spectral channel 
code of Kim et al. (1987). It expresses dependent variables as Fourier series in ^ 
and £3, and via Chebychev polynomials in £2. No-slip conditions are enforced using 
the tau method (Lanczos 1956), and a mixed Crank-Nicolson/Runge-Kutta time- 
advance scheme is employed (Spalart, Moser & Rogers 1991). Further details of the 
solution procedure are given in the Appendix. 

2.3. Cases 

Two straining fields are considered here, defined by the components summarized in 
table 1. Both cases correspond to 3DBLs, in that the angle of sweep a and there- 
fore the skewing j^13 = J/3J are non-zero. We choose a — 45° and set j/13 to 
0.735 ut(0)/<5(0), the initial wall-friction-velocity to channel-half-width ratio. The 
rationale for these choices is given below. For now we note that the first case, denoted 
S45 ('S' to indicate non-zero skewing, '45' the angle of sweep), has no normal compo- 
nents, and thus supplies the effect of a mean crossflow with no streamwise pressure 
gradient (PG); the second strain, Case AS45, combines skewing with streamwise 
deceleration and wall-normal stretching to create the deformation imposed by an 
idealized 45°-swept wing (hence the notation AS45-'A' for adverse-pressure-gradient, 
'S45' for a = 45° skewing). 

The numerical parameters used for both cases are listed in table 2, where Ax- 
and Az- are the horizontal domain sizes in the principal-strain coordinates, and 
(mx-,my-,mz-) and (nx-,ny-,nz-) are respectively the number of expansion coefficients 
and collocation (quadrature) points in the x*-, y*-, and z*-directions. Even though the 
initial Reynolds number for these runs is the same as that used by Kim et al. (1987) 
for their two-dimensional study, Re% = uxö/v « 180, the three-dimensional nature of 
the present flows requires a larger computational expense (i.e. a square horizontal 
domain), due to the non-zero angle of sweep and the crossflow development. Aliasing 
(quadrature) errors are minimized by setting nx- = 3mx-/2 and nz- = 3mz-/2. (Total 
aliasing-error control is not possible, since assigning n* = 3m*/2 would compromise 
the no-slip boundary conditions.) Spectra and two-point correlations from Case AS45 
at s/ut = 0.125 are shown in figure 2, from locations near the wall and the centreline; 
Case S45 results are similar. The effect of the deformation, which for this case involves 
a compression in the x'- direction, can be seen in the spectra by the shift of energy 
to higher wavenumbers, compared to the initial distribution. In the correlations the 
influence of st?'u < 0 is apparent from the reduction of the length of maximum 
streamwise separation (a measure of the largest structures that can be faithfully 
represented within the domain) from 0.5/l*(0) at t = 0 to about 0.39^* at the time 
shown. Despite the strain-induced change of scale of the turbulence, the spectra and 
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FIGURE 2. One-dimensional Fourier spectra and two-point correlations in principal-strain direction 
x' for Case AS45: , u   component; ,v'; , w*. Curves with and without symbols 
respectively denote stf^t = 0.125 results and unstrained initial conditions at s#nt = 0. (a,b) near 
centreline, y„/6(0) = 0.805; (c,d) near walls, yw/S(0) = 0.03. 

correlations reveal that the resolution and domain size are sufficient to capture both 
the smallest and largest spatial structures. 

Multiple Case S45 and AS45 simulations were performed using the same strain 
parameters for statistically independent realizations of the two-dimensional Poiseuille 
initial conditions. These a = 45° initial conditions were obtained by specifying that the 
bulk flow rates in x' and z* be equal and running the strained-channel code with no 
applied strain and the numerical parameters listed in table 2, until the statistics of the 
two-dimensional flow indicated a mature stationary state. At this point Case S45 and 
AS45 realizations were begun while the unstrained computation was continued until 
another statistically independent field for another pair of realizations was produced. 
The statistics presented below (denoted by an overbar) were gathered by averaging 
over planes parallel to the walls, over both halves of the channel, and over seven 
independent runs of each case. 
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f<0 

x = 0 

dw~    „ 
>o        ä^>0 

Initial flow 
direction 

FIGURE 3. Plan view of three-dimensional wall layer subjected to pure-skewing strain, (a) Spatially 
developing flow. Outer-layer streamlines and isobars very nearly coincide, {b) Strain applied to fluid 
element of spatially developing flow and strained-channel DNS. (Cross-hatched regions represent 
angular distribution of normal strains.) (c) Initial and deformed domain of strained-channel DNS 
for Case S45. 

3. Results 
3.1. Pure-skewing strain: Case S45 

In order to determine the influence of pure three-dimensionality unaccompanied by the 
complications of stream wise pressure gradients, we set &?'22 = 0, sd'n = —^33 =fc 0, 
and choose an angle of sweep a = 45°. With respect to the initial flow direction, 
the resulting strain field has only j/13 = Jz/31 as non-zero components, so that it 
corresponds to an idealized mean pressure gradient that always acts at a right angle 
to the mean flow direction (figure 3). The channel turbulence thus experiences a 
deformation like that imposed along the centreline of Schwarz & Bradshaw's (1994) 
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curved wind tunnel. Unlike the curved-duct flow, for which the streamwise gradient 
dP /dx can only be zero at one spanwise location, here the strain field is the same at 
every (x,z) point in the domain. (In the Schwarz & Bradshaw duct, along trajectories 
outside the centreline, the streamwise gradient through the bend is first adverse then 
favourable, and vice versa for paths closer to the centre of curvature; see their figure 
2.) Another difference between the Schwarz & Bradshaw and present flows is in 
the magnitude of the skewing rate. The one used here, j/13 = 0.735wT(0)/(5(0), is 
roughly twice as large, in terms of inflow ux and boundary-layer thickness, as the 
dW/dx imposed in the curved-duct experiment. For these reasons (and also because 
of differences in Reynolds number, and downstream variation of the rate of skewing) 
we cannot expect the Schwarz & Bradshaw and Case S45 statistics to correspond. 
Nevertheless, the flows do share enough features that their comparative behaviour 
should be instructive. 

3.1.1. Mean profiles and histories 

The response of the mean velocity to the applied strain and in-plane wall motion 
(2.14) is illustrated in figure 4. These results validate the strained-channel methodology. 
A key characteristic of pressure-driven three-dimensional boundary layers can be seen, 
namely the sudden appearance of spanwise shear d w/dy (mean streamwise vorticity) 
in the outer layer, due to the $g\ 3 -induced skewing of the mean spanwise vorticity. 
The straining of the flow structures, away from their natural shapes in the two- 
dimensional flow, is also reproduced (although the same mean-flow behaviour could 
be obtained simply by injecting streamwise vorticity with a y-dependent body force, 
such an injection is unrealistic; the straining is required to correctly deform the outer- 
layer structures). The absence of streamwise acceleration (i.e. jrfn = sin = 0) causes 
the 'thickness' of the flow to remain constant, such that the distance S between the 
wall and centreline in figure 4(a) is the same at all times (cf. figure 15 below). The 
inviscid skewing mechanism is thus the only mean-straining effect present in the outer 
layer. As a consequence, the d w/dy variation above the location of maximum w is 
inherited from the streamwise shear 8 ü/dy of the initial flow. This explains the good 
agreement shown in figure 4(b) of the outer-layer hodograph with the straight solid 
lines, whose slopes are set by the Squire-Winter-Hawthorne (SWH) relationship, 
which assumes the mean velocity is governed solely by the effect of the skewing 
on the mean vorticity (Bradshaw 1987). For the present flow, using a to denote the 
angle through which the effective outer-layer mean velocity has turned due to the 
An skewing, such that a = arctan^nt), the SWH prediction gives uL = u" tan(2a), 
where uL and ul are respectively the velocity components orthogonal and parallel to 
the current effective flow direction of the applied irrotational mean. The requirement 
that the mean velocity vector (ü,w) change direction across a 3DWL is manifested 
by the finite curvature of the hodograph, as it describes the velocity distribution 
across both inner and outer layers. If inviscid skewing were to control the crossflow 
over the entire layer, and there were no near-wall shear-driven effects, the hodograph 
would be completely straight, and everywhere (including the origin) have the negative 
slope given by the SWH angle 2a. The result would be a collateral, rather than 
three-dimensional, flow. 

The inner-layer scaling of the mean-velocity magnitude is shown in figure 4(c) (the 
symbols are from Kim et al.'s 1987 simulation). Noticeable departures from the initial 
two-dimensional profile, and from the standard law of the wall, are found as a result 
of the skewing. The internal boundary layer associated with the rising magnitude of 
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<5(0) 

0 0.5 1.0 

(w-wj/«c(0)   («-«J/5C(0) 

FIGURE 4. Mean velocity evolution for Case S45: , s4nt = 0 (a = 0°); , s^nt = 0.0625 
(a = 3.6°); , st^t = 0.125 (a = 7°). (a) Axes aligned with initial mean flow, (b) Hodograph, 
showing components (after wall velocities removed) parallel w" and normal ux to instantaneous 
coordinates aligned with current direction of mean skewing (i.e. rotated away from principal-strain 
coordinates (x*,z*) by angle a + a), normalized by parallel component at centreline u\\ solid 
line segments denote SWH prediction, (c) Current wall-unit scaling; non-dimensional magnitude 
Q* = ((ü - uw)2 + (w - uw)2)I/2/"r(0 and wall-normal coordinate y+ = yw(0) expfj^OMO/v. 
where u2(r) = v[(8u/8y)l + (3w/Sy)2]1/2 is the current total wall-shear stress. Solid symbols are 
from two-dimensional KeT = 180 channel of Kim et al. (1987). 

the spanwise wall-shear stress has not propagated much higher than y+ « 10 (cf. 
figures Aa and Ac). 

The histories of the centreline-wall velocity differences (Aüe, Äwc) responsible for 
the development of the inner layer are plotted in figure 5(a). The vertical lines in 
figure 5 indicate the times for which profiles are shown in other figures. These times, 
s/l3t = 0, 0.0625, and 0.125, respectively correspond to skewing angles of a = 0°, 
3.6°, and 7°. The streamwise Aüc and spanwise Avvc components of the centreline-wall 
velocity difference are given by equation (2.14), which for the Case S45 strain field 
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FIGURE 5. Histories of (a) mean centreline-wall velocity difference (equation (3.1)), {b) surface 
shear stress and (c) maximum turbulence kinetic energy for Case S45: upper curves, streamwise 
components (Auc = uc - uw in (a), (z„)x = v(dti/dy)„ in (b)); lower curves, spanwise component 
(Aw,. = wc—ww and (%„), = v(8w/dy)w). Solid curve in (c) indicates maximum over all y„, locations 
of k = jüjüj; (cf. figure 6b) (note expanded vertical scale). Vertical lines mark times for which mean 
profiles are shown in other figures. 

are respectively 

uc{t) - uw(t) 
MC(0) 

wc(t) - ww(t) 

Mc(O) 

= cosh(-j/i3f), 

= sinh(-s/ut). 

(3.1a) 

(3.1ft) 

These dictate the evolution of the yw = 5 values of the figure 4(a) mean velocity 
profiles. The in-plane wall-velocity treatment (2.14) therefore closely approaches the 
desired nominally zero effective streamwise pressure gradient: (3.1a) yields (uc — 



92 G. N. Coleman, J. Kim and P. R. Spalart 

uw)/uc(0) = 1.006 and 1.022 respectively at s?[3t = 0.0625 and 0.125. The spanwise- 
component history (3.1b) produces nearly linear growth of the effective crossflow 
at the centreline for the times considered (figures 4a and 5a), and ensures that the 
hodograph is correctly closed at the surface (figure 4b). This in turn develops the 
appropriate mean shear near the wall. Another measure of the rotational mean-flow 
development is shown in figure 5{b), where the upper curve traces the history of the 
streamwise mean skin friction, and the lower curve reveals the growth of the spanwise 
component, which is rapid. In contrast to Awc and Awc, which are functions only 
of s/i3t, the drag is affected by both the external forcing (applied strain) and the 
turbulence. In the Schwarz & Bradshaw experiment the total skin-friction coefficient 
Cf was observed to remain nearly constant through the bend, instead of increasing 
as in figure 5(b). However, since before entering the bend Cf was decaying with 
downstream distance, the levelling off in the curved section while the boundary-layer 
thickness kept increasing can perhaps be viewed as a milder form of the Cf increase 
seen here (furthermore, their perturbation was weaker). 

The upward drift in time of the streamwise component of surface shear (figure 5b) 
might suggest that the turbulence near the wall has become more vigorous as the 
result of the applied skewing, but the histories of the turbulent stresses reveal the 
opposite. A stabilizing trend is apparent in figures 6(a) and 6(b) , which respectively 
show a reduction with time of the profiles of streamwise Reynolds shear stress —u'v' 
and turbulence kinetic energy k = \u\u\ = \q2. These reductions are more clearly 
quantified in the sub-plots in the upper-right corners of figures 6(a) and 6(b), which 
illustrate the amount the st^t = 0.125 profilesjiave changed from their initial values 
(the figure 6a inset shows the net change to —u'v'; in figure 6(b) both k (solid symbols) 
and the vertical velocity variance v'v' (open symbols) are included). The decrease of k 
is also documented in figure 5(c), in terms of the history of/cmax, the largest value of k 
at each time. Figure 6(b) shows that as k decreases near the wall, the magnitude of the 
vertical velocity fluctuations ÜV becomes larger across the entire layer. The issue of 
the ultimate source of the near-wall reduction of k and inner- and outer-layer growth 
of ÜV will be addressed in the next subsection, where we consider the effect of the 
skewing on the various terms in the Reynolds-stress budgets. We shall find there that 
budget terms involving the pressure fluctuations play a crucial role in the evolution 
of the turbulence. Foreshadowing this discovery is the amplification of the pressure 
fluctuations themselves, whose root-mean-square values are found in figure 6(c).| 
Of particular significance is the instantaneous pressure-fluctuation increase caused 
by the impulsive application of the strain (compare the thin and thick solid curves, 

f There is a subtlety associated with diagnosing the pressure field associated with the diver- 
gence-free velocity in the strained-channel flow: because the grid deforms in time, spatial and 
temporal derivatives do not commute, which introduces an extra term in the Poisson equation. The 
kinematic pressure p satisfies p,„ = -«],,"",; - 2u*,,^Jy (note the factor 2). 

FIGURE 6. Profiles of (a) shear stress, (b) turbulence kinetic energy, and (c) root-mean-square pres- 
sure fluctuations for Case S45:  , dnt = 0 (a = 0°); , sitf = 0.0625 (a = 3.6°); 
 , sfut = 0.125 (a = 7°) (data for s/l3t = 0.0625 not shown in (a) and (b) to clar- 
ify presentation). Lower, middle, and upper curves in (a) respectively correspond to spanwise 
Reynolds shear stress j-v'w', streamwise Reynolds shear stress —u'v', and total shear stress 
(t)toiai = [(v(du/dy) - u'v')2 + (v(8w/8y) - v'w')2]1/2. Subplots in (a) and (b) show change with 
respect to initial profile (in units of background plot) of sstnt = 0.125 results, of (a) -u'v' and 
(b) k (solid symbols), v'v' (open symbols). Thick solid ( ) curve in (c) is sfnt = 0 value 
immediately after strain is applied (note expanded vertical scale). 
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which respectively illustrate the jz/nt = 0 profiles just before and just after the strain 
is applied). Because of the elliptic nature of an incompressible flow, the pressure- 
velocity correlations in the Reynolds-stress budgets exhibit step changes in time, and 
thus dominate the early flow history of the stresses. This will be demonstrated in 
§3.1.2. _   

While the trend is for k and —u'v' to both decrease, the —v'w' shear stress does 
the opposite, with the largest growth occurring near yw/S = 0.2 (figure 6a). However, 
although this component grows, it does so at a rate too small to immediately offset 
the reduction in -i7t7; the magnitude x = («V + v'w' )1/2 of the Reynolds-shear 
stress 'vector' (—ÜV, —v'w') also decreases in time. The decrease is very close to that 
observed for the total (turbulent plus viscous) shear stress magnitude (r)totai (except 
immediately adjacent to the wall), shown in the upper curves in figure 6(a). The 
extent to which these pure-skewing-induced changes are the result of deep structural 
alterations to the Reynolds-stress tensor is revealed in figure 7(a). This plot presents 
the stress/energy ratio r/q2 (commonly given the symbol a\ and referred to as the 
Reynolds-stress structure parameter), and shows it changes very little over most of 
the layer, with only a slight decrease of the maximum value. The implications of 
stress/energy-ratio reductions, a classical feature of perturbed 3DBLs, are twofold. 
From a fundamental point of view it implies that the extraction of kinetic energy 
from the mean by the turbulence has become less efficient. From a practical point of 
view it indicates an inaccuracy in turbulence models that assume aj is constant for all 
flows. The reduction seen in figure 1(a) is not large enough to pose a grave turbulence- 
modelling challenge; instead it demonstrates the degree to which the stress/energy 
ratio is (or rather is not) modified by a pure skewing strain. We shall see when we 
discuss Case AS45 that when the normal strain components are also non-zero the 
changes in a.\ are much larger. 

Another indication of the effect of the mean skewing upon the turbulence structure 
is given by the ratio of the turbulent flux of turbulence kinetic energy to the turbulence 
kinetic energy itself, v'(u'u' + v'v' + w'w')/(u'u' + v'v' + w'w'). This ratio measures the 
velocity Vqi with which k = \q2 is transported by the turbulence either toward 
(Vqi < 0) or away from (Vqi > 0) the wall; it is plotted in figure 1(b). Unlike in the 
Schwarz & Bradshaw curved-duct experiment, where Vqi was observed to decrease 
near the wall as the crossflow developed, and increase farther away, only minimal 
changes are produced by the Case S45 skewing. The source of this discrepancy 
is thought to be the off-centreline streamwise acceleration/deceleration, mentioned 
above, found in the duct flow (see also figure 18b below). The DNS results reveal 
that the impact of the pure skewing strain upon the turbulence structure is limited. 
Some aspects of modelling 3DWLs are therefore likely to be influenced less by mean 
three-dimensionality than by features unrelated to the introduction of mean crossflow. 

An attribute of the pure-skewing flow that will expose many turbulence models- 
any that assume isotropic eddy viscosity-is the lack of agreement between the 
direction of the mean shear and Reynolds shear stress. Differences as large as 30° are 
observed, especially near the wall. This can be seen in figure 8. The sign change in the 
mean gradient angle yg = arctan [(d w/dy)/(du/dy)] in figure 8(a) is a consequence 
of the sign change in d w/dy observed in figure 4(a). The modelling difficulty is in 
the finite time required for the spanwise shear to produce spanwise Reynolds stress 
—v'w'. The slow growth of —v'w' is another classical feature of non-stationary 3DBLs 
(Schwarz & Bradshaw 1994). Because of it, the stress angle y'z = arctan[—v'w'/ — u'v'] 
lags well behind yg. In fact, early on in the outer region the gradient and stress angles 
have opposite signs, and therefore rotate away from each other; it is only much later 
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FIGURE 7.  Profiles of (a) stress/energy ratio ay  = z/q1  and (b) turbulent transport velocity 
Vqi = Vu^Jq2 for Case S45:  , s4nt = 0 (a = 0°); , j*nt = 0.125 (aj^7°) (data for 
s/nt = 0.0625 not shown to clarify presentation). Reynolds-stress magnitude T = (u'v' + v'w' )1/2. 
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FIGURE 8. Direction of (a) mean shear yg and (b) Reynolds shear stress yx for Case S45:  , 
dnt = 0 (a = 0°); , sfnt = 0.0625 (a = 3.6°); ■■••-, stfnt = 0.125 (a = 7°); O, 
sfnt = 0.60 (single realization). Mean-shear angle yg = &rcten[(dw/dy)/(du/dy)]; Reynolds-stress 
angle y[ = arctan[-t)'w'/ — u'v']. 

that yT begins to follow (i.e. have the same sign but a smaller value than) yg in the 
outer region (compare the open symbols in figures 8(a) and 8(b), which show the 
variation of yg and yt at stnt = 0.60). One of the primary goals of this project is to 
more fully understand the relationship between the mean shear (du/dy,dw/dy) and 
the (—«V, —t/vv7) stresses, and to ascertain the implications for modelling suddenly 
distorted 3DBLs. This will require consideration of the behaviour of the various terms 
in the Reynolds-stress budget equations, the subject to which we now turn. 
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FIGURE 9. Terms in the budget of turbulence kinetic energy k = 0.5u|u; for Case S45: thin solid 
curves ( - Ps \Pft at ja^iat = 0.125;  

-Ek = —j£„- at s?nt = 0.125; 
2* a ) denote terms at si at = 0 (before strain); 

, Tk = \TU at sint = 0.125;  Dk = \Da at st„t = 0.125; 
nk = \nu at si^ = 0.125; A, P? = |P/ at sint = 0.125; thick solid curve ( ), sum \nu at sint = 0.125; A, P? = fi 

of all terms (« ö/c/öt) at j/13t = 0.125 (also shown in inset with expanded vertical scale). Shaded 
regions indicate change from unstrained initial-condition profiles. Curves normalized by U^(/v, 
where Urc( = 0.73«t(0). 
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FIGURE 10. Mean-shear production Pk

s = -uV d ü/dy - v'w' d w/dy of turbulence kinetic energy for 
Case S45: , Pk

s at sint = 0; , Pk
s at sint = 0.125; , product of -ÜV at stnt = 0 

and du/dy at .t/nt = 0.125. Normalization as in figure 9. 

3.1.2. Reynolds-stress budgets 
For the strained-channel flow, the non-dimensionalized transport equations for the 

Reynolds stresses reduce to 

duty 
Pu + Tn + D„ + n, ij       «y £['/> (3.2) 

where the effective material derivative d/dt = d/dt + s^nyd/dy (see §2), and right- 
hand-side terms are the rates of (cf. Mansour, Kim & Moin 1988) 

— dJii     -i—, dTii —   —II'IY     i.   — 1/' iv      production : P,; = —u'p' -r-L — u'jv' — u\v!es2j( — u'^stfu, 

dissipation : —ey = 
2  8u't du) 

Re dxa dx(' 
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turbulent transport :  Tu = -— (v'u^u'j) , 

1   d2   /-rT\ 
viscous diffusion : Dtj = —T-^ I «,-uj , 

/ ,3p'       ,dp' 
velocity-pressure-gradient term : 77,, = — I u- •""^T- 

The Reynolds number Ke is again based on the reference velocity l/ref and 5(0), 
the channel half-width of the unstrained initial condition. For Cases S45 and AS45, 
Re = 130 and C7ref is 0.73 times the initial friction velocity uT(0), such that Re, = 
utS/v = (ut/Ure{)Re exp(j/22t) is initially « 180 (as in Kim et al. 1987 and Mansour 
et al. 1988). The velocity u't and kinematic pressure p' in (3.2) have been scaled by 
Uref, while the independent variable xt is in units of 5(0). The Reynolds stresses uty 
are functions solely of time r = ? and the wall-normal coordinate y, or equivalently 
the distance from the nearest wall, yw{t) = (1 - |j;(0) |)exp(^220 = jUO) exp^^O- 

Some modellers replace the velocity-pressure-gradient term in (3.2) by i7,7 = \p{j + 
fa, where (for this parallel flow) v>y = -{dp1^i/dy)82j - (dp'u'j/dy^j is the pressure- 
transport correlation (5tj is the Kronecker delta), and </>,7 = {p'(du!Jdxj + du'j/dxj)) 
is the pressure-strain term. We focus primarily upon the original velocity-pressure- 
gradient correlation 77y in this discussion. 

On the other hand, a decomposition is applied to the production term, in order to 
distinguish between the direct effects of the irrotational applied strain j/y and those 
arising indirectly through changes to the rotational mean u(y,t). We separate the 
total production rate Pu into rotational (i.e. shear) and irrotational (applied-strain) 
components, Py = Pfj + Pff respectively, where 

P* =-W f^-M !£>, (33a) 11 '     dy       J     ay 

P^ = -W,sfj< - u'^st«. (3.36) 

We begin by examining the budget of turbulence kinetic energy with the aim of 
determining the source of the reduction observed when the pure-skewing strain is 
applied (cf. figure 6b). The shaded regions in figure 9 indicate the amount each 
term changes during the time from s/i3t = 0 to 0.125, while the thick solid curve 
(both on the main plot and the expanded-scale inset) denotes the negative net dk/dt 
given by the sum of all the right-hand-side termsf at s/nt = 0.125. Also shown (the 
open symbols) is the 'new' applied-strain production P£ = —2u'w'&?l3; it is initially 
negligible (identically zero in the two-dimensional limit), and is still very small at 
stfuX = 0.125, since by this time the applied strain has yet to produce an appreciable 
-tTw7 stress. Although P( contributes slightly to the kinetic energy decrease, the 
major source of the reduction is the change incurred by the mean-shear production 
P£ = — uVdü/dy — Vw'd w/dy. Most of the Pj! decrease can in turn be traced to a 
reduction in the streamwise Reynolds shear stress —u'v', as figure 10 illustrates. The 
j^! 3-induced decrease of the shear production is affected more by changes to the 

t Strictly speaking, the right-hand-side sum is only approximately equal to dk/dt, since it includes 
any errors due to spatial discretization and incomplete statistical convergence. But for all budget data 
presented herein these factors are small enough that in the discussion to follow the approximation 
can be taken as an identity. 
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FIGURE 11. Terms in the budget of streamwise Reynolds shear stress —u'v' for Case S45: thin-solid 
curves ( ) in (a) and (b) denote terms at s/^t = 0 (before strain); , -Pf2 at st^t = 0.125; 
 , +si2 at ss^nt = 0.125; , -Tn at rfnt = 0.125; , -D12 at rfnt = 0.125; 
 , -J712 at j/i3r = 0.125; A, -Pf2 at stl3t = 0.125; thick solid curve ( ), sum of all 
terms (» —SüV/Sf) at s4nt = 0.125 (also shown in inset with expanded vertical scale). Part (b) 
symbols: •, pressure-strain correlation -<j)l2 at s/nt = 0.125; O, pressure-transport term -ipn 

at s/ut = 0.125. Shaded regions in (a) and (b) indicate change from unstrained initial-condition 
profiles. Normalization as in figure 9. 

—ÜV Reynolds stress than to the dü/dy profile - since the initial P£ (the solid curve 
in figure 10) is nearly the same as the hypothetical production (the chain-double-dot 
curve) defined by the product of the mean shear dü/dy at st^t = 0.125 and the 
initial value of —u'v'.   

This result leads us to consider the — u'v' budget, whose terms are plotted in figure 
11. The shaded regions again indicate the amount each term has changed with respect 
to its initial profile. Here the primary reason why -d u'v'/dt is negative (see the thick 
solid curve inset on the upper right-hand side of the figure) is the increase in amplitude 
of the velocity-pressure-gradient correlation /712 (dotted curve). The rapid temporal 
variation of YI{2 is accompanied by even larger changes to the pressure-strain (f)\2 and 
pressure-transport xpn terms, of which it is the sum (figure lib). This implies that for 
this flow the velocity-pressure-gradient correlation, since it represents the imbalance 
of two larger terms, might be easier to model than each of xpn and </>i2. 

The outer-layer increase in —ÜV production, —Pf2 = v'v'd ü/dy, (barely) visible in 
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FIGURE 12. Terms in the budget of vertical-velocity variance v'v' for Case S45: thin solid curves 
( ) denote terms at st^t = 0 (before strain); , -s22 at sdnt = 0.125; , T22 at 
s/nt = 0.125; ,_022 at stl3t = 0.125; , 7722 at sfi3t = 0.125; thick solid curve ( ), 
sum of all terms (« dv'v'/dt) at s/i3t = 0.125 (also shown in inset with expanded vertical scale). 
Shaded regions indicate change from unstrained initial-condition profiles. Normalization as in 
figure 9. 

figure 11 is due in large part to amplification of n22, and the dv'v'/dt > 0 it causes in 
this region (figure 12)-although changes to the dissipation s22 and especially the tur- 
bulence transport T22 are not negligible. We conclude that the most apparent changes 
to the Reynolds-stress tensor crucially depend on the velocity-pressure-gradient corre- 
lation; the near-wall stabilization of the turbulence demonstrated in figure 5 can thus 
be attributed to the interaction of the pressure and velocity fluctuations overwhelming 
the influence of the extra-strain production introduced by the mean spanwise shear. 

The YIjj term also accounts for the slow growth of the spanwise Reynolds shear 
stress —v'w' (and its unexpected sign in the outer region, opposite to that of d w/dy), 
and the resulting large difference documented in figure 8 between the direction of the 
mean gradient (du/dy,dw/dy) and that of the shear stress (—u'v',—v'w'). Evidence 
is presented in figure 13, which shows how the —v'w' budget is affected by the 
j^i3 skewing. Two terms respond immediately to the impulsively applied strain: the 
applied-strain production P£ and the velocity-pressure-gradient correlation 7723- The 
other terms in (3.2) react over finite time. These two quantities therefore alter the 
balance of the —v'w' transport equation the moment the strain is applied; they adjust 
from being either exactly zero (P£) or approximately so {Tl2i, to the extent that the 
initial-condition statistics are converged and purely two-dimensional) to the initial 
j^i3-induced values illustrated in figure 13(a). The open-symbol curve denotes the 
new explicit production of -v'w', -P23 = u'v'sfn, while the dotted curve shows the 
increase of -7723 due solely to the initial 'turning on' of the applied strain. (To clarify 
the presentation, the — Tin increase is measured with respect to its unstrained initial 
value, since the latter is not identically zero, and contains statistically insignificant 
but noticeable oscillations when viewed on the scale used for figure 13a.) The shaded 
region in figure 13(a) represents the sum of these two 'initial pulse' terms. We see that 
the initial (impulsive) effect of the strain is to create positive —v'w' everywhere except 
near the wall, where the trend is -dv'w'/dy < 0. This tendency is exactly opposite to 
that associated with mean-shear production -P23 (see the chain-dot curve in figure 
13b) defined by the span wise-shear profile (cf. figure 4a). This explains why initially 



100 G. N. Coleman, J. Kim and P. R. Spalart 

0.02 

g 
'3 
O 

o 
K-l 

-0.02 

0.08 

_g 
'« 
O 

o 

-0.08 
0.2 0.4 0.6 1.0 

FIGURE 13. Terms in the budget of spanwise Reynolds shear stress — v'w' for Case S45 at (a) 
jtf13t = 0 (immediately after pure-skewing strain applied) and (b) sfi3t = 0.125 for Case S45: 
 , -P|3; , +£23; -_^_-, -T2y, — , -D23; , -^23; A, -i>£; thick solid curve 
( )t sum of all terms (« -dv'w'/dt) at s/^t = 0.125. Solid curve ( ) and shaded region in (a) 
indicate net imbalance initially supplied by sum of -Pf} and -7723 (i.e. the terms instantly affected 
by applied strain); unstrained initial-field profile subtracted from -7723 in (a) to remove statistically 
insignificant oscillations. (Note difference in vertical scales of a and b.) Normalization as in figure 9. 

the mean-gradient yg and shear-stress yt angles shown in figure 8 have opposite 
signs in the outer layer. In general, —7723 and —P2

S
3 tend to oppose each other, with 

their magnitudes each much larger than the explicit production — P£, and especially 
the net growth rate —3 v'w'/dt. The budget of spanwise-shear stress —v'w', and the 
others examined in this section, therefore indicates that correctly accounting for 
the velocity-pressure-gradient terms will be a strategic part of accurately modelling 
perturbed 3DBLs. 

3.2. Swept-wing strain: Case AS45 
Three-dimensionality rarely occurs in isolation, since pressure gradients that introduce 
a mean crossflow usually also accelerate or decelerate the boundary layer. Classic 
examples include flows upstream of wing-body junctions, over swept airfoils, and 
within the curved passages of turbomachinery - each of which in addition to being 
subject to a pure-skewing outer-layer deformation also experiences mean stretching 
or compression in the streamwise and wall-normal directions (van den Berg et al. 
1975; Bradshaw & Pontikos 1985; Anderson & Eaton 1989; Ölcmen & Simpson 
1995). In the past it has been difficult to differentiate between behaviour driven by 
the off-diagonal and the normal components of the irrotational deformation. The 



Strained three-dimensional wall-bounded turbulence 101 

(a) (b) 

Outer-layer 
streamlines 

\45° 

Isobars 

S^^SSm^SJ^SM 

\     'A 8U' 

"     z ox 

y 

8U Idz 

8V„     dVl 
dy       dy' 

■•-■-<• dU°°     ' 8U~ 

dx      2 sx* 

-»-X 

(c) 

Channel walls , 1>„ 
— X •^l.-f **■ 1 

t = 0 

\t 
//////////////////////. 

s4. 22 X    ^ll-f' 
'7777777777777777777777'. 

I<5(0 

(>0 

FIGURE 14. Plan and side views of three-dimensional boundary layer subjected to combined 
pure-skewing and APG strain, (a) Spatially developing flow: 45° infinite-swept wing ('port-side' 
version), (b) Strain applied to fluid element at x = 0 of spatially developing flow and at t = 0 
of strained channel DNS. (Cross-hatched regions represent angular distribution of normal strains.) 
(c) Initial and deformed domain of strained-channel DNS for Case AS45. 
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DNS data presented in this section, from Case AS45, address this difficulty. By 
subjecting wall-bounded turbulence to the most general strain allowed by (2.1)-and 
thereby combining the effects of spanwise and streamwise mean pressure gradients - 
and comparing the results to those from the pure-skewing simulation, we expect to 
obtain significant insight into the physics of non-stationary 3DBLs. 

We choose strain-field parameters that correspond to a time-developing counterpart 
of the infinite-swept-wing experiments of van den Berg et al. (1975) and Bradshaw 
& Pontikos (1985). Consequently, the principal-strain components are defined as 
j/;, = -sf*12 = -1.47wt(0)/<5(0) and J/;3 = 0. Rather than the 35° angle of sweep 
used in the experiments, for Case AS45 a is set to 45°. As a result, we apply the 
spanwise skewing, streamwise and spanwise deceleration, and wall-normal stretching 
appropriate for a 45° swept-wing: sd\i = —s/n = —J/33 = 0.5ssf22 > 0 (see table 1 
and figure 14). The strain rate for this case is about an order of magnitude larger 
than that imposed in the van den Berg et al. and Bradshaw & Pontikos experiments 
(measured in terms of the friction velocity and boundary-layer thickness at the inlet 
of their curved diffuser), where here s/l3 = 0.735 of the initial uz/8. Note that the 
magnitude of skewing J/13 is the same for Case AS45 as it was for Case S45. (While 
the computational expense required to consider the experimental strain rate for the 
same range of A^t would have been unrealistically high, the early stages of one 
realization from a simulation with strain rate approximately equal to the van den 
Berg et al. and Bradshaw & Pontikos values will also be briefly discussed.) The ratio 
of mean-distortion to turbulence timescales will thus be significantly different in the 
strained-channel and experimental flows. Because of these factors, we only anticipate 
qualitative agreement. 

3.2.1. Mean profiles and histories 
The development of the Case AS45 mean crossflow is compared to that for the 

non-APG strain in figures 15(a) and 15(b). (Contrast the curves without and with 
symbols.) The total strain for the last time shown, s#nt = 0.125, is similar to the 
equivalent total strain (s/l3t « 0.15) imposed in the Bradshaw & Pontikos experiment. 
While both DNS flows experience mean spanwise shear dw/dy in the outer layer as 
a result of the skewing, the distorting effect of the APG is also apparent for Case 
AS45, in the increase with time of the distance between the channel walls, which 
duplicates the thickening of the layer caused by the mean streamwise deceleration. In 
other words, d w/dy is distributed over a wider and wider region as time passes. The 
agreement with the SWH prediction (the solid lines in figure 15b) is not diminished by 
the presence of the APG strain. The streamwise deceleration s/n < 0 is responsible 
for the leftward shift of the hodograph as the difference between the mean streamwise 
velocities of the flow and the wall is driven toward zero, under the influence of the 
in-plane wall motion prescribed by equation (2.14). For Case AS45, the streamwise 
and spanwise components of the centreline-wall velocity differences invoked by (2.14) 
are 

Ut)~"wit) = {(I + exp (-2^13t)), (3.4a) 
wc(0) 

Wc(t)  - Ww(t) 

Mc(O) 
= i(l-exp(-2j*,30). (3.4*) 

As indicated in figure 16(a) (a graphical presentation of (3.4)), the wall motion thus 
combines a bulk streamwise deceleration (upper solid curve) with a growing crossflow 
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FIGURE 15. Mean velocity evolution for Case AS45 (coordinates and normalization as in figure 4): 
 , j*nt = 0 (a = 0°) (and SWH prediction in b); , sl\%t = 0.0625 (a = 3.6°); , 
s^nt = 0.125 (a = 7°); •, two-dimensional ReT = 180 channel of Kim et al. (1987). Open symbols 
in (a) and (b) are s£nt = 0.0625 and 0.125 results from Case S45. 

(lower solid curve). The strategy of coupling the in-plane wall motion and outer-layer 
strain described in § 2 produces the desired mean flow behaviour. 

The effect of the mean deceleration can be seen in the local minima in the total- 
shear-stress profile plotted in figure 17(a), and even more directly in the streamwise 
skin-friction history given by the upper thin solid curve in figure 16(0). As one would 
expect for a flow with negative s/n, the surface shear exhibits a rapid decrease of the 
streamwise component. (The open symbols in figure 16 again represent the Case S45 
results.) At jaf i3t = 0.125, the latest time for which flow statistics are examined, the 
streamwise skin friction has fallen to 7.5% of its initial value, before becoming zero 
near s/i3t = 0.15 (and entering a 'pseudo-separation' regime, in the sense that the 
skin-friction reversal is not accompanied by strong flow away from the wall as it is 
in the spatial case). Despite undergoing such a large reduction, the mean streamwise 
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FIGURE 16. Histories of (a) mean centreline-wall velocity difference (equation (3.4)), {b) surface 
shear stress and (c) maximum turbulence kinetic energy for Case AS45: upper curves, streamwise 
components (AUC =HC — uw in (ö), (TU,)X = v(du/dy)n in (b)); lower curves, spanwise component 
(AMY = WC- WW and (rw)r = v(dw/dy)w). Thin solid curve in (c) indicates maximum over all yw 

locations of k = {u'^ (cf. figure 176); thick solid curves in (b) and (c) are from a single realization 
with j/i3 = -J^II = — J^33 = 0.5^22 = 0A2uz(0) /3(0) (i.e. each component 16% of that used for 
Case AS45) (note expanded vertical scale in c). Vertical lines mark times for which mean profiles 
are shown in other figures. Open symbols are from Case S45. 

shear at the wall (du/dy)w at ssf^t = 0.125 remains 18 times the size of the applied 
skewing strain jaf13. This suggests that in the near-wall region any unphysical effects 
due to the strain-induced deformation of the no-slip walls are less important at 
stfut = 0.125 than are features associated with the streamwise and spanwise shear. 

By the time (du/dy)w changes sign at s/^ «0.15, the mean flow has decelerated 
to the point where (uc — üc(0) )/wc(0) « 0.85, and the effective pressure coefficient, 
(Cp)eir = 1 — (üc/üc(t) )2 is less than 0.3. Separation usually occurs when (Cp)efr is 
between 0.45 and 0.50 (e.g. Alving & Fernholz 1995; Spalart & Coleman 1997). The 
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FIGURE 17. Profiles of (a) shear stress, (b) turbulence kinetic energy, and (c) root-mean-square 
pressure fluctuations for Case AS45: , stnt = 0 (a = 0°); , stnt = 0.0625 (a = 3.6°); 
 , jrfnt = 0.125 (a = 7°). Lower, middle, and upper curves in (a) respectively correspond to 
spanwise Reynolds sheaj_stress —v'w', streamwise Reynolds shear stress —u'v', and total shear stress 
(t)toui = [(v(du/dy)-u'v')2 + (v(8 w/dy)-v'w')2]l/2. Thick solid ( ) curve in (c) is s/l3t = 0 value 
immediately after strain is applied (note expanded vertical scale). 

lower-than-usual (Cp)eS at separation may be influenced by the step-function strain 
history. It is more strongly affected by the magnitude of the applied strain: when 
another infmite-swept-wing strain is used, one with <s/i3 (= \s&u\ sdn = f33 I) 
approximately the same fraction of ut(0) /<5(0) as in the van den Berg et al. and 
Bradshaw & Pontikos experiments (such that each component is 16% of its Case AS45 
value), the streamwise wall-shear history shown by the thick-solid curve in figure 16(b) 
results. Although it has been stopped before the streamwise wall shear TW becomes 
negative, this run shows that the time at which it will do so is well past the s£\it = 0.15 
(and therefore significantly greater than the (Cp)eff « 0.3) found for Case AS45. The 
separation point is not fixed solely by the magnitude of the pressure coefficient. 

Whereas the effect of the swept-wing strain field is stabilizing near the wall (in 
the sense that it diminishes dü/dy and therefore the production), farther away the 
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FIGURE  18. Profiles of (a) stress/energy ratio a{ = z/q2 and (b) turbulent transport velocity 
Vq2 = ^JJq2 for Case AS45: , dnt = 0 (a = 0°); , ss/ut = 0.0625 (a = 3.6°); , 
s/nt = 0.125 (a = 7°). Open symbols in (a) and (b) are sfut = 0.125 results from Case S45. 

opposite is true. Figure 16(c) shows that the maximum turbulence kinetic energy /cmax 

increases monotonically in time, with non-zero initial slope. This positive dkmax/dt 
at t = 0 is another symptom of the relatively large Case AS45 strain rate; for the 
run with sd^ chosen to approximate the experiments, the peak k initially decreases 
(cf. the thick solid curve in figure 16(c) with figure 7(g) of Bradshaw & Pontikos 
1985). The Case AS45 strain is responsible for an increase in turbulence activity not 
just at the location of largest k, but across the entire channel: the kinetic-energy 
profiles in figure 17\b) show that k increases at every yw. (Using the time-dependent 
channel half-width ö(t) to non-dimensionalize the wall-normal coordinate in figure 
17(b) has made the outward shift of the location of maximum turbulence kinetic 
energy, typical of APG layers, less obvious; replacing S(t) with the constant initial 
value (5(0) produces the expected behaviour, at least its initial stage; cf. figure 15a.) 
The wall-normal fluctuations ¥&, on the other hand, increase their peak value while 
becoming less intense near the centreline (figure 17b). The pressure disturbances, like 
k, also uniformly increase for 0 < yw ^ 5{t) (figure 17c), to levels significantly larger 
than those found for Case S45. The impulsive change to the initial pressure field 
observed just after the strain is applied is also more pronounced for the swept-wing 
strain (compare the thick solid curves in figures 17c and 6c). In spite of the near-wall 
reduction in dü/dy revealed in figure 16(b), the streamwise Reynolds stress —u'v' 
experiences rapid growth for yw ^ 03ö(t), where -du'v'/dt > 0. At larger distances 
from the wall —ÜV decreases slightly over time. An explanation for the behaviour of 
the k, tJV, and —wV statistics (and of the spanwise stress —v'w') presented in figure 17 
is deferred until the next subsection, where we examine the Reynolds-stress budgets. 
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FIGURE 19. Direction of (a) mean shear yg and (b) Reynolds shear stress yz for Case AS45: 
tfl3t = 0 (a = 0°); , s/nt = 0.0625 (a = 3.6°); , stat = 0.125 (a = 7°). 

One can obtain insight into the relative significance of the various strain components 
by comparing the evolution of the stress/energy ratio a{ and the turbulent transport 
velocity Vqi for Case AS45 with those for Case S45. Both quantities are reduced in 
the outer layer to well below their initial levels by the swept-wing strain; a\ and Vq2 
reductions of the same magnitude were also found in the outer layer of the Bradshaw 
& Pontikos flow. Figure 18 also shows that the deformation containing normal-strain 
components (i.e. the one corresponding to an adverse streamwise pressure gradient) 
produces a much greater decrease than when the mean skewing acts alone (the 
open symbols in figure 18 represent pure-skewing results at jtfl3t = 0.125, which 
corresponds to the dotted-profile Case AS45 data.) This implies that the strain 
created by an adverse pressure gradient has a greater influence on the development of 
the turbulence in a three-dimensional boundary layer than the spanwise shear does. 
Because of its wide-ranging practical consequences (e.g. with regard to turbulence- 
model development), we consider this finding to be one of the most significant results 
of this study. 

It would be a mistake, however, to assume that all 3DBL features are controlled by 
the APG strains: another noteworthy characteristic of the swept-wing strain flow is 
illustrated in figure 19, concerning the early evolution of the spanwise Reynolds shear 
stress —¥w'. The closely similar behaviour of the mean-gradient and shear-stress 
angles, yg and yx, observed for Cases S45 and AS45 (cf. figures 8 and 19) points to the 
lack of dependence of —d v'w'/dt on the mean normal-strain components. In other 
words, the misalignment between (dll/dy,dw/dy) and (—u'v',—v'w') is not affected 
by the mean deformation induced by the APG. The quantities that are responsible, 
and their insensitivity to the streamwise pressure gradient, are topics of the next 
subsection. 

3.2.2. Reynolds-stress budgets 
As in §3.1.2, we begin with the turbulence kinetic energy k. The profiles in figure 

20 reveal the origin of the increase observed in figure 17(b). Whereas the initial 
impact of the pure-skewing strain was negligible (cf. figure 9), for the swept-wing case 
the applied-strain production Pf (open symbols in figure 20a) instantly provides a 
substantial source of energy to the turbulence. (The thick solid curve in figure 20(a) 
represents the sum of P( and the initial impulsive change to TIk (the shaded region) 
caused by the immediate alteration of the pressure field produced by the applied strain; 
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RGURE 20. Terms in the budget of turbulence kinetic energy k = 0.5u-t4 at (a) sd\3t = 0 
and (b) s?nt = 0.125 for Case AS45. Quantities in (a) are those instantly affected by ap- 
plied strain:  , Tlk = j/7„ for unstrained initial field;  , TIk just after strain applied; 
O, —üV-s/n —vrv's^22 — w'w'stfii (i.e. non-zero terms of applied-strain production Pk   = \P:f) at 
jgnt = 0; , sum of all terms (» dk/dt) immediately after strain applied. Quantities in (b) reveal 
changes after finite time: thin solid curves ( ) denote terms at si^t = 0 (before strain); , Pk

s 

at .s^nt = 0.125; , -ek at jfi3t = 0.125; , Tk at s/i3t = 0.125; ^ at s*ijt = 0.125; 
 , nk at stnt = 0.125; A, -2u'w'j*i3 at s/i3t = 0.125; O, -u'u's?n ~ v'v'jrf22 - w'w's?33 at 
s/ut = 0.125; thick solid curve ( ), sum of all terms (« dk/dt) at srfnt = 0.125. Shaded re- 
gions indicate change from unstrained initial-condition profiles. Normalization as in figure 9. (Note 
difference in vertical scales of a and b.) 

the IIk change is much smaller than the initial P£.) The turbulence becomes more 
energetic for Case AS45 than for Case S45 because of the normal-strain components 
in the swept-wing field; since P( = —2U'W'J/I3 — u'u'jtfn — v'v's/22 — W'W'J^33 (and 
the normal Reynolds stresses of the two-dimensional initial field are non-zero), the 
irrotational strain creates and maintains a production term that is of the order of 15- 
20% of the initial shear production Ffc

s. The open circles in figure 20 denote the fraction 
of P£ defined by the streamwise st\\, wall-normal st-n, and spanwise j/33 components 
while the open triangles correspond to that due to J^13. (This convention will also 
be used for the other Reynolds stresses, with circles and triangles used to distinguish 
between applied-strain production P(j associated with the normal and off-diagonal 
components, respectively.) The Case AS45 strain has a distinct implicit or indirect 
effect on the budget for k, since it leads to pronounced changes of all the terms present 
in the unstrained field (see the shaded regions in figure 20b). For example, the large 
structural alteration illustrated above by the turbulent transport velocity Vq2 (figure 
18b) appears in figure 20 as the difference between the initial and s/13t = 0.125 (short- 
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FIGURE 21. Terms in the budget of streamwise Reynolds shear stress —u'v' at (a) stfnt = 0 and 
(b) J^nt = 0.125 for Case AS45. Quantities in (a) are those instantly affected by applied strain: 
 , -nl2 for unstrained initial field; , -i712 just after strain applied; O, u'v'(stn + ^22) (i.e. 
non-zero terms of applied-strain production -Pf2) at s$nt = 0; , sum of all terms (» -du'v'/dt) 
immediately after strain applied. Quantities in (b) reveal changes after finite time: thin solid curves 
( ) denote terms at s/l3t = 0 (before strain); —•—, —P?2 at s/^t = 0.125; , +£12 
at s/i3t = 0.125; - -1^1 -Tl2 at s/i3t = 0.125; ^_—, -Dn at stnt = 0.125;  , -i712 

at s/i3t = 0.125; A, v'w'stn at s/l3t = 0.125; O, U'D'(S/U +^22) at s/l3t = 0.125; thick solid 
curve ( ), sum of all terms (» -du'v'/dt) at sf\3t = 0.125. Shaded regions indicate change from 
unstrained initial-condition profiles. Normalization as in figure 9. (Note difference in vertical scales 
of a and b.) 

dashed) turbulent transport curves Tk; changes to the shear production, dissipation, 
viscous diffusion, and velocity-pressure-gradient terms are even larger. Nevertheless, 
the explicit contribution of P£ is larger still. It leads to positive dk/dt at every yw 

location, and thus accounts for the uniform increase of the k profiles found in figure 
17(b), and the rising history in figure 16(c). In the sense of being able to directly 
supply energy to the turbulence, the APG-induced strains (diagonal components) 
therefore have a more profound influence on the flow than the s/{i skewing does. 

The explanation is less straightforward for the -u'v' budget, whose terms are shown 
in figure 21. Instead of being mostly the result of the applied-strain production, the 
sign of the initial —du'v'/dt pulse (the thick solid curve in figure 21a) is now 
determined by an immediate increase of —Uxl (the shaded region) due to the initial 
step change of the pressure field as it responds to the application of the strain. The 
figure 21(b) results indicate that the same tendency, for —du'v'/dt and —P(2 to be 
of opposite sign, is also found after finite time (jtfl3t = 0.125). The indirect effect 
of the strain is thus more important in the development of 
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FIGURE 22. Terms in the budget of vertical-velocity variance v'v' at (a) stfnt = 0 and (b) s#nt = 0.125 
for Case AS45: Quantities in (a) are those instantly affected by applied strain:  , veloc- 
ity-pressure-gradient correlation FI22 for unstrained initial field; • ■■_-_■, Tl22 just after strain applied; 

O.P& -2v'v's/22 at sdnt = 0;  , sum of all terms (« dv'v'/dt) immediately after strain 
applied. Quantities in {b) reveal changes after finite time: thin solid curves ( ) denote terms 
at sint = 0 (before strain); , -E22 at j/13t = 0.125; , Tn at s/13t = 0.125; , 
D22 at sint = 0.125; , Tl22 at j/nt = 0.125; O, P?2 at sstl3t = 0.125; thick solid curve ( ), 
sum of all terms (« dVv'/dt) at j/13r = 0.125. Shaded regions indicate change from unstrained 
initial-condition profiles. Normalization as in figure 9. 

■Pj$. The the normal or off-diagonal contributions to the applied-strain production 
positive -5ÜV/3? found at sd^t = 0.125 is primarily due to the imbalance between 
two large changes: an increase in the shear production — P,s

2, and a decrease in the 
velocity-pressure-gradient correlation —7712, with the former slightly larger than the 
latter. (Note that in the outer layer, both the initial-impulse and s/^t = 0.125 values 
of —77i2 represent a source of —MV, while below yw = 035(t) this term also begins 
as a source but eventually acts to reduce the —u'v' stress.) The amplification of the 
shear production —Pf2 = Vv'dü/dy is itself a symptom of a significant change to 
J722, another of the velocity-pressure-gradient components. The growth of —P,s

2 is 
caused by growth of the vertical-velocity variance v'v'. (Recall that figure 16 indicates 
a dü/dy decrease in the immediate vicinity of the wall.) Figure 22 shows that the v'v' 
increase is primarily the result of strain-induced alterations to 7722. Once again the 
initial impulsive change to the velocity-pressure-gradient correlation acts to instantly 
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FIGURE 23. Terms in the budget of spanwise Reynolds shear stress -v'w' for Case AS45 at (a) 
s?nt = 0 (immediately after swept-wing strain applied) and (b) srfnt = 0.125 for Case AS45: , 
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s
3; , +E23; , -r23; , -£»23; , -nx; A, wv'^n; o, i/w'^ + ^s); 

thick solid curve ( ), sum of all terms (« -dv'w'/dt) at sdnt = 0.125. Solid curve ( -) and 
shaded region in (a) indicate net imbalance initially supplied by sum of -P23 and ~n2i (i-e. the 

terms instantly affected by applied strain); unstrained initial-field profile subtracted from -7723 
m 

{a) to remove statistically insignificant oscillations. (Note difference in vertical scales of a and b.) 
Normalization as in figure 9. 

offset the applied-strain production, with the 1722 increase roughly balancing the 
negative P& first applied to the flow (figure 22a)^ at later times, J722 overwhelms the 
explicit production, causing the net positive d v'v'/dt observed in figure 22(b), which 
in turn leads to the -u'v' and k growth evident in the above statistics. This behaviour 
is absent from Case S45. Neither the explicit v'v' production P& = -2v'v's£11 (which 
here represents a sink, since ^22 > 0) nor the 7722 'kickback' is present when the 
skewing deformation acts alone (cf. figure 12). An APG is needed to thicken the layer 
(or a favourable one needed to think) for this i^-versus-P^ imbalance to occur. 

Our last result concerns the -v'w' budget, presented in figure 23. It reveals yet 
another 'tug-of-war' (partial cancellation) between the implicit effects embodied by the 
velocity-pressure-gradient term (—II23) and explicit new production supplied by mean 
flow gradients, in this case by both the spanwise shear (v'v'dw/dy) and the applied 
strain (üV^n +ü7vv7[j/22 + ^33])- Immediately after the strain is applied, the impact 
of the swept-wing deformation is nearly identical to that of the pure-skewing strain. 
This is because —t/w1 is zero for a two-dimensional flow.t so that —Pf3 is initially the 

t The extent to which this infinite-ensemble-average idealization is realized by the initial fields is 
revealed by the solid curves in figures S(b) and 19(b). 
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same for the two cases, and because the normal-strain components have a negligible 
effect on the initial — 7723 jump created by the impulsive distortion. The latter can be 
inferred by comparing the dotted curves in figures 13(a) and 23(a), which respectively 
indicate the impulsive initial changes of —7723 for Cases S45 and AS45; they are 
indistinguishable. The budgets are also qualitatively similar even after the turbulence 
has been subjected to the two strain fields for a finite time, with the — P^ and —P^ 
production, the — 7723 correlation, and net —dv'w'/dt each in approximately the same 
proportion, regardless of whether or not the normal-strain components are active (cf. 
figures 13b and 23b). In the light of this similarity, it is no surprise that the shear-stress 
angle yx profiles in figures 8(£>) and 19(b) agree so well. Once again we notice that the 
magnitude of the net —d v'w'/dt is given by the difference of much larger terms. 

The —v'w' budgets for Cases AS45 and S45 have at least two significant implications. 
The first is simply that this component of shear stress is primarily affected by the sä\s 
skewing (either directly or indirectly) and the mean spanwise shear that the skewing 
generates; in 3DBLs of practical interest, —v'w' (and the lag between the mean-shear 
and shear-stress angles yg and yx) is therefore likely to be relatively insensitive to 
the normal-strain components introduced by adverse pressure gradients. A second, 
broader, implication of the budget analysis is the need to capture the effect of each 
of the velocity-pressure-gradient terms in turbulence models used to predict the 
development of suddenly distorted three-dimensional boundary layers. 

4. Summary and concluding remarks 
Time-developing strained-channel flow has been simulated as an idealization of 

pressure-driven three-dimensional turbulent boundary layers. DNS results are used 
to investigate questions regarding the physics and modelling of three-dimensional 
wall layers that arise from sudden mean-flow perturbations. This approach has the 
advantage of capturing the essential features of perturbed 3DBLs with a turbulent flow 
whose statistics depend only on time and one spatial dimension. Several of the difficult- 
to-model characteristics found in the spatial case are observed and quantified. These 
include the lag between the mean shear and Reynolds shear stress, the modification 
of the relationship between the components of the Reynolds stress tensor, and the 
controlling influence of the pressure-velocity correlation terms in the Reynolds-stress 
budgets. 

Two strain fields were considered, with and without the effect of streamwise decel- 
eration, but both including the same mean skewing components. The flow histories 
reveal that the impact of the APG on the outer-layer structure of the turbulence is 
more profound than that of the mean three-dimensionality. The stress/energy ratio 
ay experiences a much larger decrease when the APG strain is present. Although the 
strain rate used here is larger than that imposed in 3DBL experiments in which the 
stress/energy ratio decrease was attributed to mean crossflow (e.g. van den Berg et 
al. 1975; Bradshaw & Pontikos 1985; Schwarz & Bradshaw 1994), the dominance of 
the APG over the skewing deformation appears to be a fairly general result. Gleyzes 
et al. (1993) found that the same conclusion holds in the boundary layer over a finite 
swept wing, while Webster et al. (1996) have more recently discovered that the APG 
overwhelms the influence of the skewing in their experimental study of the three- 
dimensional boundary layer over a swept bump. While significant structural changes 
effected solely by spanwise shear are well-documented for purely shear-driven 3DBLs 
(e.g. Driver & Hebbar 1987; Moin et al. 1990; Jung et al. 1992; Le et al. 1999), it 
appears that <3w/3y-induced changes in the outer layer are modest. 
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Nearer to the wall the story is different. Here the effect of the spanwise shear 
is crucial, for both the shear- and pressure-driven cases. This can be inferred for 
example by the common near-wall kinetic energy reduction observed in the shear- 
driven three-dimensional channel flows (Moin et al. 1990; Coleman et al. 1996a; and 
Le et al. 1999), the strained channel (Case S45 and the low-strain-rate version of 
Case AS45) discussed above, and the infinite-swept-wing experiment of Bradshaw & 
Pontikos (1985). It is significant that the pure-skewing Case S45 results demonstrate 
the stabilizing behaviour associated with conversion of a two-dimensional stationary 
boundary layer to a non-stationary one by addition of shear-generated mean three- 
dimensionality. The similarity of the near-wall dynamics of shear- and pressure-driven 
3DBLs becomes even more apparent when the Reynolds-stress budgets for the pure- 
skewing and spanwise-moving-wall channel flows are compared (see figures 3 and 4 
of Le et al. 1999). 

In addition to producing the above general conclusions, the DNS results can be 
used in a quantitative manner to test and develop specific Reynolds-averaged closures. 
Data files containing the drag histories, mean and variance profiles, and Reynolds- 
stress budgets presented here are available from the authors for this purpose. To 
aid in this endeavour, the channel-flow solver of Wilcox (1998) has been modified 
to accommodate the strained-channel geometry and will be supplied upon request 
(Fortran and C versions are available). In addition to this code, which should be useful 
to modellers interested in testing their schemes against the DNS statistics, benchmark 
data have also been prepared by applying the strains to the laminar channel flow; 
these will allow rapid validation of the moving-wall boundary conditions and straining 
terms needed for the conversion of conventional- to strained-channel solvers. 

This work was sponsored by the Office of Naval Research (Grant No. N00014-94- 
1-0016), Dr L. R Purtell program officer. It was done in collaboration with Dr A.-T. 
Le. Computer resources have been supplied by the NAS program at NASA-Ames 
Research Center, the San Diego Supercomputer Center NPACI program, and the 
DOD Major Shared Resource Center. The C version of the strained-channel model- 
test program was converted from Fortran by Mr Khaled Nefti. At various stages 
of this study we have benefited from insightful comments and suggestions made by 
Professor P. Bradshaw. 

Appendix. Numerical procedures 
The deforming coordinate system (2.9a) results in momentum and continuity equa- 

tions that are very similar to those governing conventional Poiseuille flow. Because 
of this similarity, we are able to benefit from previous code development and testing, 
and construct an accurate and efficient solver by making straight-forward alterations 
to a well-established algorithm. 

The conversion begins by recasting (2.10) into the (v,coy) formulation employed by 
Kim et al. For the present flow we write 

-ivV = Ä, + -j-V2(VV), (Ala) 
dt Re 

/ + ^22^=0, (A1C) 
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where g = c52 is the wall-normal component of vorticity, S,- = ej;/^njö«J/3^„, and 

V2( ) = ®nTTTT +^22^f + ^33 113^,        223£2Ö£2        
33^356' 

with 

7 = ^ + ^,     s = aJj£-aW (Aid) 

~    3   /„     „. du       ,,     „, dw* 

11 ae,^,      22  22a^2a6       33  333^2' 
(Ale) 

*g= «33^ -«11^ -«33^3^ +«11^1, |f, (Al/) 
c<,3 cci 0C3 cCi 

and 

5x* 
+ eijkUjCdk - Ujs/'j. (A lg) 

app 

Equation (A 1) is equivalent to Kim et a/.'s equations (3)-(5), except for the new terms 
involving the applied strain ja/y, and the time-dependent metric ä?y( t) = exp(—s£\jt) 
multiplying each spatial derivative. 

We can utilize the Kim et al. algorithm simply by replacing their dependent 
variables V2i> and g with VV and g, with the understanding that their time and 
spatial derivatives 3( )/dt and d( )/dxt now correspond respectively to d{ )/dt and 
aJtd{ )/dZj, and V2( ) <- V2( ), hv <- hv, hg «- hg, and H, <- Ht. Actual coding 
changes therefore involve multiplying all spatial derivatives by the appropriate explicit 
time-dependent function ^(t) (with attention paid to the elapsed time, and an 
appropriate distinction between spatial derivatives associated with 'previous', 'current', 
and 'upcoming' timesteps), and adding the «s/y terms to hv, hg, and the convective term 
Ht. The latter requires modification of the CFL number definition, as in Blaisdell, 
Mansour & Reynolds (1991). 

The other major change is to the wall-boundary conditions, to allow the non- 
zero in-plane motion u'w prescribed by (2.14). This requires monitoring the initial 
and current mean centreline velocity, and saving the initial values during stops and 
restarts of the code. 

All other characteristics of the solution procedure are identical to those detailed in 
Kim et al. (1987). 
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Abstract 

We examine the structure of near-wall turbulence in three-dimensional boundary layers (3DBLs), which we approximate by 
applying an impulsive spanwise motion to the lower wall of a turbulent channel flow. Direct numerical simulation (DNS) data are 
analysed using probability density functions (PDFs), conditional-averaged quadrant analysis about Reynolds-stress-producing 
events, and visualization of vortices with the ^-criterion. The evidence suggests that mean three-dimensionality breaks up the 
symmetry and alignment of near-wall structures, disrupting their self-sustaining mechanisms, and thereby causing a reduction in the 
turbulence kinetic energy (TKE). © 2000 Begell House Inc. Published by Elsevier Science Inc. All rights reserved. 

1. Introduction 

In a three-dimensional boundary layer (3DBL) the mean 
flow direction changes with distance from the wall, and the 
turbulent stresses are not aligned with the mean shear. In many 
cases, the result is a decrease in TKE and Reynolds shear stress 
compared to an equivalent two-dimensional boundary layer 
(2DBL). Although 3DBLs exist in which these statistics in- 
crease (see listing in Johnston and Flack, 1996), the flowfields 
in those cases also contain adverse pressure gradients (not a 
3D effect), which are known to increase the TKE in the outer 
regions of the boundary layer. In practice (for example, for the 
flow over a swept wing) the adverse pressure gradient can 
dominate over the 3D effects (Coleman et al., 1997). Even in 
such flows, however, three-dimensionality serves to damp the 
turbulence in the near-wall region. Moreover, the ratio of the 
turbulent shear stress to the TKE is generally found to de- 
crease relative to 2DBLs, signifying a reduction in the effec- 
tiveness of the turbulence in extracting kinetic energy from the 
mean flow. 

The mechanism by which the turbulence quantities dis- 
cussed above are altered has been a subject of much debate. 
For example, Anderson and Eaton (1989) suggested that the 
spanwise flow reduces the strength of quasi-streamwise vorti- 
ces having the opposite sign of streamwise vorticity to the 
mean spanwise flow, reducing the mixing that occurs between 
vortices of opposite signs. Shizawa and Eaton (1990) found 
that artificially-generated vortices of either sign embedded into 
the boundary layer decay faster than they would in a 2DBL, 
but vortices whose near-wall spanwise velocity is in the same 
direction as the crossflow produce weakened ejections. Littel 

* Corresponding author. Fax: +1-310-206-4830. 
E-mail address: anhtuan@seas.ucla.edu (A.-T. Le). 

1 Present address: School of Engineering Sciences, University of 
Southampton, Highfield, Southampton SO 17 1BJ, UK. 

and Eaton (1994) found that the crossflow inhibits strong 
sweeps from vortices having near-wall spanwise velocity in the 
same direction as the crossflow, while it inhibits strong ejec- 
tions from vortices having spanwise velocity in the opposite 
direction. Kang et al. (1998) concluded that the asymmetries in 
the conditional averages of Littel and Eaton (1994) are only 
caused by non-Reynolds-stress-producing events. Sendstad 
and Moin (1992) advanced four mechanisms by which the 
spanwise crossflow affects particle trajectories in the vortical 
structures, each important at different times, which serve to 
generate lower Reynolds stress and break up the near-wall 
streaks. Their findings are, in general, consistent with those of 
Littel and Eaton. However, the mechanisms described by 
Sendstad and Moin assume that near-wall vortices are aligned 
horizontally in the 2D flow, act as independent units on the 
surrounding fluid, and respond in a 2D manner to the span- 
wise shear. More recent studies of coherent structures in 
2DBLs, both experimental and numerical, indicate that near- 
wall turbulence structures generally have a finite inclination to 
the wall, and interact in a cooperative manner to perpetuate 
turbulence (e.g., Jeong et al., 1997; Tomkins et al., 1998). 

In earlier work (Coleman et al, 1996) we found that ap- 
plying mean spanwise shear dW/dy anywhere in the near-wall 
region of an initially 2D flow reduces the mean streamwise 
skin friction, with the greatest reduction occurring when 
dW/dy is applied between approximately y+ = 5 and 15 
(where y+ is the wall-normal distance in wall units). While this 
finding has significant practical implications (indicating, for 
example, where drag-reduction control schemes should focus), 
it does not give a detailed picture of the manner in which 
mean three-dimensionality modifies near-wall structures in 
practice. The objective of the present study is to obtain ad- 
ditional insight into the behavior of the near-wall structures 
that are responsible for the observed changes in 3DBL tur- 
bulence, by employing a combination of statistical and visu- 
alization techniques. The results may lead to improvements in 
turbulence models and suggest new methods for turbulence 
control. 

0142-727X/00/S - see front matter © 2000 Begell House Inc. Published by Elsevier Science Inc. All rights reserved. 
PII: S0142-727X(00)00035-7 
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2. Approach 

All solutions are obtained using DNS. Probability density 
functions (PDFs) of velocity and vorticity are used to analyse 
the data. We also employ the conditional-averaged quadrant 
analysis introduced by Kang et al. (1998). Vortical structures 
within the flowfields are visualized using the ^-criterion of 
Jeong and Hussain (1995), whereby vortices are associated 
with negative values of A2, defined as the second largest ei- 
genvalue of the tensor S^Sy + unity, where 5,7 = (UQ + «/,,)/2 
and Qij = (iijj — w/,,0/2 are the strain and rotation tensors, 
respectively. Here the subscripts (i,j,k) may have values 
(1,2,3) which correspond respectively to the streamwise, wall- 
normal, and spanwise directions, such that (xi,x2,xi) = {x,y,z) 
and («|,«2,1*3) = (u,v,w). 

Our discussion will focus on results obtained by the time- 
evolving 3DBL generated from an impulsive spanwise-moving 
wall in a fully developed turbulent channel flow. In the interest 
of demonstrating the generality of the underlying physics, we 
will also discuss statistical results from numerical experiments 
on the Ekman layer, a statistically stationary 3DBL. 

0.95 

Fig. 1. History of streamwise wall shear and maximum TKE, nor- 
malized by value at initial condition, in channel with spanwise moving 
wall: xw: —- £max. 

3. Results 

The initial fields, at ReT = 180, are similar to that of Kim 
et al. (1987), except that a wider domain with greater streamwise 
grid resolution is used to accommodate the realignment of the 
mean flow caused by the moving wall. The results of simula- 
tions started from five independent initial fields are averaged 
into the statistics shown here, three of which have the domain 
size 471 x 2 x 871/3 with 256 x 129 x 256 grid points in the 
streamwise, wall-normal, and spanwise directions, respectively, 
and two of which have the domain size 8TI x 2 x 16TE/3 with 
512 x 129 x 512 grid points. Here, the domain size is nor- 
malized by the channel half-height. 

Starting from a statistically steady 2D state, the wall is set 
in motion in the spanwise direction at time t+ = 0.0 with ve- 
locity Ws

+ = -8.5, generating a spanwise mean shear with 
positive streamwise vorticity which diffuses from the wall into 
the flowfield (we use a ' + ' superscript throughout to indicate 
scaling with respect to wall units of the initial unperturbed 
flow). Reynolds stress, TKE, and the stress-energy ratio ini- 
tially decrease, then recover (see Coleman et al., 1996). A 
corresponding reduction in streamwise wall shear is observed 
with a similar time scale (Fig. 1). For the sake of discussion, we 
refer to the time interval when the TKE and streamwise wall 
shear are decreasing (t+ < 60) as the reduction period, with 
early reduction indicating the period when the rate of decrease 
is accelerating (i+ < 20), and late reduction when the decrease 
is slowing down (20 < t+ < 60). The period during which the 
drag and peak TKE increase with time from their minima 
(t+ > 60) is denoted as the recovery period. 

As we are mainly interested in the mechanisms that reduce 
turbulence intensity and drag, the present analysis focuses on 
changes in the flowfield during the reduction period. 
Throughout this period, the Reynolds stress and mean shear 
are not aligned, as illustrated in Fig. 2, which shows the 
development of the lag angle X = ys - yt, where ys and yT 

respectively represent the angles of the mean velocity gradient 
and turbulent shear stresses in the x-z plane reference frame 

{W/dy\ 

^arctan(swJ' arctan 
v'w1 

The lag angle decreases in time as the turbulence adjusts to the 
mean shear. During recovery, the wall-normal variation in the 
shear angles diminishes and turbulence-mean lag becomes 

60 

-20 

(a) 
10 20 

+ 
y 

30 40 

Fig. 2. Shear angles in channel with spanwise moving wall: — ys, mean shear angle;  y„ turbulent shear angle; 
(a)<+ = 13.5;(b)<+ = 135. 

X, lag angle: 
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negligible; the flow in the near-wall region therefore becomes 
collateral - i.e., effectively 2D (Fig. 2(b)). 

3.1. PDF analysis 

Previous research indicated that 3DBLs exhibit asymme- 
tries between the flow induced by vortices having the same and 
opposite signs of vorticity as the spanwise shear layer (hence- 
forth referred to as positive and negative vortices, respectively). 
Assertions have also been made that the sweeps and ejections 
from near-wall vortices are affected in different ways by the 
three-dimensionality. We seek to verify these findings by ex- 
amining the PDFs of the velocity field in the 3D channel flow. 

Fig. 3 shows a weighted joint PDF of vt and v' in the 3D 
channel at y+ = 10, a location where sweeps and ejections are 
initially similar in strength. The distribution is weighted by u'v', 
which reveals how each velocity component contributes to the 
-wV shear stress. The most important changes to the total 
Reynolds shear stress early in the_flow history are experienced 
by the streamwise component -u'v1, since the spanwise fluc- 
tuating velocity is slow to respond to the mean spanwise shear. 
This is demonstrated in Fig. 3(a) and (b), where the u' and v' 
distributions in the channel coordinates (those aligned with the 
initial 2D flow) are essentially the same as those that have been 
aligned with the Reynolds-stress angle yt, implying that the 
spanwise contribution is insignificant at these times. Later, as 
the  turbulence  adjusts  to  the  spanwise  perturbation,  the 

spanwise component becomes more significant, which is 
manifest in the difference between the distributions in the 
channel frame of reference and that aligned with yx (Fig. 3(c)). 
These figures show that ejections (events that produce Rey- 
nolds shear stress in the second quadrant, or Q2) are affected 
most significantly by reductions in strong negative u', while 
sweeps (fourth-quadrant, or Q4, events) are affected by re- 
ductions in both u' and v'. Sendstad and Moin (1992) studied a 
similar time-developing 3D channel flow in which the spanwise 
shear was created by an impulsive constant pressure gradient. 
In their DNS study, the effective wall velocity increases linearly 
from zero, rather than being a step function as in the present 
case. Nevertheless, much of the behavior of the two flows is 
similar. They attributed the changes in the fluctuating velocity 
distribution to modification by the spanwise shear of the tra- 
jectories of fluid about streamwise vortices. 

To determine the dependence of -u'v' on the sign of the 
streamwise vortex, we condition the weighted joint PDF of «' 
and v' above with the sign of streamwise vorticity. Fig. 4 re- 
veals that ejections associated with negative <o'x are reduced to 
a much greater extent than the sweeps, while the sweeps as- 
sociated with positive co'x are reduced to a much greater degree 
than ejections. This is consistent with the findings of Sendstad 
and Moin (1992) and those of Littel and Eaton's rotating disk 
study (1994), suggesting that the mechanisms affecting the 
turbulence are the same in both time-evolving and stationary 
3DBLs. 
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Fig. 3. Weighted joint PDF of u' and i/ in channel with spanwise moving wall aXy+ = 10: 3D distribution; 3D, aligned with Reynolds- 
stress angle yt; shaded lines denote initial-condition contours: (a) t+ = 13.5; (b) t+ = 27; (c) t+ = 54; (d) /+ = 135. 
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The joint PDF of streamwise and spanwise vorticity also 
produces some revealing results. Fig. 5 shows the distribution 
of vorticity at y+ = 10 at various times for the 3D flow. Unlike 

the Reynolds shear stress, for which the contour shapes are 
similar regardless of the frame of reference, the major axis 
of the vorticity distribution rotates as the flow develops. 

Fig. 4. Weighted joint PDF of »' and v' in channel with spanwise moving wall at y+ = 10 and t+ = 13.5, conditioned on co'x, shaded lines denote 
initial-condition contours: (a) w'x < 0; (b) CJ'X > 0. 
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Fig. 5. Joint PDF of w'x and co[ in channel with spanwise moving wall at y+ = 10: 3D distribution, 3D distribution aligned with 
turbulence intensity angle y,; shaded lines denote initial 2D value: (a) (+ = 13.5; (b) t+ = 27; (c) /+ = 54; (d) l+ = 135. 
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Experience indicates that this rotation is well defined by the 
turbulence intensity angle, y,, namely, the orientation of the 
principal axis of the planar turbulence shear stresses in the x-z 
plane. This angle is defined as 

,    2u'W 
y, = - arctan    =—= 

In Fig. 5, the dotted lines denote the vorticity distribution in 
the frame of reference aligned with y,. Since the ft reference 
frame accounts for the bulk turning of the vorticity field 
caused by the moving wall, changes in the shapes of the dotted- 
curve distribution can be interpreted as evidence of structural 
modifications of the turbulence. 

With the introduction of three-dimensionality, the vorticity 
magnitude at y+ = 10 increases until t+ = 27, after which it 
slowly decreases (Coleman et al., 1996). An interesting asym- 
metry appears in the w'z distribution, where positive w'z asso- 
ciated with positive ca'x is increased, while positive w'z 

associated with negative dx is decreased. Note that w'x itself 
does not exhibit appreciable asymmetry. The lack of asym- 
metry is shown in Fig. 6, where the PDF of w'x in the frame of 
reference aligned with yt remains generally symmetric 
throughout the flow history. This suggests that the vortical 
structures, which initially are essentially streamwise at this 
wall-normal location, are not strongly asymmetric in the 3D 
flow; rather the shear layers or streaks generated by the 
vortices are affected differently depending on the sign of the 
vortex. The asymmetry in the spanwise vorticity decreases as 
the flow recovers. 

The contours of u' in the y-z plane shown in Fig. 7 provide 
a clue to the source of increased spanwise vorticity near the 
wall. As the wall moves in the spanwise direction, it carries 
along the fluid next to it, straining the near-wall streaks and 
causing them to become layered in the wall-normal direction. 
The resulting velocity gradients, most pronounced at the in- 
terface between positive and negative «', represent an increase 
in spanwise vorticity, w'z. It is this layering that increases dis- 
sipation during the reduction period, signified by the enstrophy 
increase observed by Coleman et al. (1996), which contributes 
to the turbulence kinetic energy reduction. Note that the 
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Fig. 6. PDF of streamwise vorticity &ty+ = 10 in channel with span- 
wise moving wall, reference frame aligned with turbulence intensity 
angle y,: /+ = 0, —- t+ = 13.5, t+ = 27, t+ = 54, 
 t+ = 135. 

Fig. 7. Contours of u1 in y-z plane of channel with a spanwise-moving 
wall: u' > 0, —- u' < 0; tickmarks on z-axis represent 50 wall units: 
(a) initial 2D flow; (b) t+ = 13.5; (c) t+ = 27; (d) (+ = 54; (e) t+ = 135. 

layering decreases as the turbulence recovers toward a new 2D 
state. 

We offer an explanation for the a'z asymmetry using the 
schematic diagram in Fig. 8. In a 2DBL, a near-wall streamwise 
vortex generates a high-speed streak by sweeping high-speed 
fluid toward the wall and a low-speed streak by ejecting low- 
speed fluid away from the wall. In the y-z cross-section shown, 
a positive vortex (one having a>x > 0 at its core) has the high- 
speed streak on the right and the low-speed streak on the left, 
and vice versa for a negative vortex. In the 3D flow generated 
by a spanwise-moving wall, the lower part of the streaks move 
in the spanwise direction, so that the streaks become layered as 
in Fig. 7. For the positive vortex, the high-speed streak is pulled 
under the low-speed streak, forming a vertical interface having 
positive ca'z, and lessening the probability of an interface with 
negative co'z. Thus, positive a>'z associated with positive a>'x is 
increased, while negative dz associated with positive w'x is 
decreased. A similar effect occurs with the negative vortex, 
strengthening negative w'z associated with negative a>'x, etc. 
However, since high- and low-speed streaks have different 
distributions near the wall (high-speed streaks are stronger near 
the wall, and have wider spanwise extents due to the 'splatting' 
effect) the near-wall layering associated with the negative vortex 
is likely to generate a different, perhaps weaker, vertical inter- 
face. Thus, the increases in vorticity that occur in the first and 
third quadrants of the vorticity PDF (in Fig. 5) are not iden- 
tical. This mechanism is similar to that observed by Dhanak 
and Si (1999) in their 2D model of a near-wall vortex in the 
presence of wall oscillations, wherein the oscillations promote 
the mixing of high- and low-speed streaks. 



A.-T. Le et al. I Int. J. Heat and Fluid Flow 21 (2000) 480- 485 

y 
n 

(a) 

hi-speed 
streak 

lo-speed 
streak 

hi-speed 
streak 

Fig. 8. Schematic of redistribution of vorticity due to streak defor- 
mation due to a spanwise-moving wall: (a) initial 2D flow; (b) 3D flow. 

3.2. Conditional-averaged quadrant analysis 

To isolate the important near-wall structures we examine 
events that are characteristic of vortical motions. Kang et al. 
(1998) investigated the velocity fields about strong sweeps and 
ejections in their rotating disk experiment by averaging about 
locations containing high Reynolds shear stress, then per- 
forming a quadrant analysis on the conditional-averaged 
quantities. Here we apply the same procedure to the 3D 
channel flow. 

Fig. 9 illustrates the distribution of the Reynolds shear 
stress about strong sweeps and ejections at y+ = 10 in the 3D 
channel, strong indicating events for which — u'v' > 2»^mst/rms, 
with sweeps having v' < 0 and ejections having i/ > 0. Here, the 
frame of reference is aligned with the Reynolds stress angle yx. 
The center peak in each plot, depicting a strong sweep or 
ejection, is flanked by two secondary peaks generated by the 
opposite event. Because near-wall Reynolds shear stress is for 
the most part associated with near-wall vortical motion, Kang 
et al. (1998) postulated that these peaks represent the signature 
of a pair of streamwise vortices that generate the strong Rey- 

nolds-stress-producing event. The center peak in each plot 
contains the combined effect of both vortices, while the sec- 
ondary peaks contain the effect of an individual vortex. 
Therefore, asymmetries in the Reynolds shear stress produc- 
tion by the vortices can be discerned by comparing the sec- 
ondary peaks. In Fig. 9(a) the left secondary peak represents 
the sweep of a negative vortex (counter-clockwise with respect 
to Fig. 9) while the right secondary peak represents the sweep 
of a positive one. Both are dominated by Q4 events. Con- 
versely, in Fig. 9(b) the vortices are positive on the left and 
negative on the right, and the secondary peaks, dominated by 
Q2 events, represent ejections from the vortices. Note that at 
y+ = 10 the Q4 events are more pronounced than the Q2 
events in both 2D and 3D flows (the Q4 peaks are more 
prominent than the Q2 peaks these figures). As z+ increases, 
the correlations between structures decrease, and the value of 
the total conditional average approaches unity, i.e., the aver- 
age becomes uW (not conditional). The components from all 
the quadrants then sum to unity. 

In contrast to the roughly symmetric secondary peaks in the 
initial 2D field (shown as shaded lines), the 3D flow contains 
significant asymmetries in z of both Q2 and Q4 events at 
t+ = 13.5, resulting in an asymmetric total stress. Specifically, 
positive vortices generate both stronger sweeps and ejections, 
or at least are more effective at generating Reynolds shear 
stress, than negative vortices. In addition, relative to the plane- 
averaged uW at this time, which is decreasing from the 2D level 
(Fig. 3), strong Q2 and Q4 events are actually stronger than 
those in the 2D flow, with the strongest events being associated 
with positive vortices. This suggests that, though there are 
fewer Reynolds-stress-producing events to contribute to the 
overall — u'v', a greater percentage of the events that do occur 
generate strong Reynolds shear stress. The positive mean 
spanwise shear apparently reinforces the effectiveness of posi- 
tive vortices in generating strong Reynolds shear stress, as 
previously observed by Anderson and Eaton (1989). Visual- 
ization of the 3D flow (discussed below) suggests that this 
asymmetry in Reynolds shear stress generation is a conse- 
quence of the deformation of vortical structures. 

Although some asymmetry in Ql and Q3 events are dis- 
cernible in Fig. 9, the asymmetry in the total Reynolds shear 
stress is dominated by the behavior of Q2 and Q4 events. This 
is in contrast to the findings of Kang et al. (1998), who found 
that the asymmetries in the total Reynolds-stress are only due 
to Ql and Q3 events. However, their measurements were 
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Fig. 9. Conditional average of wV at y+ — 10 in channel with spanwise moving wall, t+ = 13.5: 
 Q4; shaded lines denote initial-condition contours: (a) strong ejection; (b) strong sweep. 

total (uV); -- Ql; Q2; Q3; 
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taken at y+ RS 90, much further away from the wall than in the 
results plotted in Fig. 9. The 3DBL in their rotating disk 
experiment is also statistically stationary, rather than time- 
evolving as in the present study. For more direct comparisons 
we perform the same quadrant analysis on the Ekman layer of 
Coleman (1999), also a statistically stationary 3DBL with a 
similar spanwise mean velocity profile (Reynolds number for 
this flow is Re = UxD/v = 1000, where Ux is the magnitude 
of the freestream velocity, and D2 = v/ß, with ß being the 
rate of rotation about the wall-normal axis). Fig. 10 reveals 
that at y+ = 10 the Reynolds shear stress possesses the 
asymmetries observed in the channel with a spanwise moving 
wall, while Fig. 11 shows only a slight asymmetry at y+ = 89, 
which is still characterized by differences in the Q2 and Q4 
peaks. Thus, the asymmetries observed in the total Reynolds 
shear stress (Figs. 9-11) come from Reynolds-stress-producing 
quadrants. Moreover, at the larger wall-normal distance, 
Reynolds shear stress is not typically associated with quasi- 
streamwise vortices, which exhibit the asymmetric behavior 
we observe, but with, for instance, the heads of hairpin vor- 
tices, which may respond differently to mean three-dimensio- 
nality. 

3.3. Visualization 

Finally, we visualize the vortical structures in the channel 
flow using isosurfaces of X2. Fig. 12 shows an example for the 
2D case. The vortices are oriented roughly in the streamwise 
direction, and arranged in an overlapping manner. Jeong et al. 
(1997), who performed a conditional average on the X2 distri- 
bution in a channel flow, described the alignment of the near- 
wall vortices as the alternating positive-negative pattern pre- 
sented schematically in Fig. 16(a). Such clustering of vortical 
structures allows them to reinforce each other's induced 
flowfields, giving rise to streaks whose lengths are many times 
longer than the vortices themselves. Fig. 13, in which dy 

contours represent the streak boundaries at y+ = 5, clearly 
demonstrates this characteristic. Jeong et al. (1997) also 
showed that the average near-wall vortex is not aligned with 
the jc-axis, but is slightly rotated in the x-z plane as shown in 
Fig. 16(a), and inclined in the wall-normal direction, so that 
the downstream head of the vortex is further away from the 
wall than the tail. 

Fig. 14 displays the effect of the spanwise shear upon the 
vortical structures at t+ = 13.5. Although the vortical struc- 

100 100 

(a) z+ (b) 

Fig.  10. Conditional average of »V in Ekman layer at y+ = 10; symbols same as in Fig. 9: (a) strong ejection; (b) strong sweep. 

100    200    300 
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Fig.  11. Conditional average of «V in Ekman layer at y+ = 89; symbols same as in Fig. 9: (a) strong ejection; (b) strong sweep. 
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Fig. 12.   Vortices   in   initial   2D  channel 
X% = -0.012, scaled with wall units. 

(r+ = 0):   isosurfaces  of Fig. 14. Vortices in channel with spanwise moving wall at t+ = 13.5: 
symbols same as in Fig. 12. Wall motion is in negative z-direction. 

Fig.  13. Wall-normal vorticity in 2D channel (/+ = 0) aty1" = 5: 

rfy > K,o)rmS; 
W'y < "KAms- where KAmS = <&&) 

initial 2D flow; contour levels incremented by {co' 0)ma. 

'/2; 

tures are not diminished to an appreciable degree at this time, 
the tails of the vortices, which are closer to the wall, move with 
the wall in the spanwise direction, while the heads retain their 
2D orientation. This results in a change in the shapes of the 
vortices. Notice that many of the vortices in Fig. 14 appear to 
have more curvature than those in Fig. 12, and that the streaks 
shown in Fig. 15 appear to be breaking up into shorter 
structures that exhibit some degree of realignment in the new 
mean shear direction. 

Based on the statistical and visualization results, we offer 
Fig. 16 as a model of the changes in vortical structures in a 
3DBL. In contrast to the relatively symmetric structures shown 
in Fig. 16(a), positive vortices are now 'J-shaped', and negative 
vortices 'S-shaped'. Because the induced velocity on the con- 
cave side of a vortex line is greater than on the convex side, 
positive vortices create weaker sweeps than ejections, and 
negative vortices have weaker ejections than sweeps, resulting 
in the asymmetries observed in the velocity PDFs. Moreover, 
because the single-curvature of a positive vortex tends to focus 
its ejections more than the double-curvature of a negative 
vortex reinforces its sweeps, the Reynolds shear stress gener- 
ated by positive vortices is stronger than that of negative 
vortices, which is manifest in the asymmetric distribution in 
the conditional-averaged quadrant analysis (Fig. 9). Another 
effect of the spanwise shear is to rotate the vortices away from 
their cooperative, overlapping alignment, resulting in the 
break-up of the nearwall streaks, as seen in Fig. 15. 

Fig. 15. Wall-normal vorticity in channel with spanwise-moving wall 
aty+ - 5 and t+ = 13.5: symbols same as in Fig. 13. Wall motion is in 
negative z-direction. 

highspeed 
streak (swe 

speed 
(eject) 

negative 
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Fig. 16. Schematic of near-wall turbulence structures in (a) 2DBL and 
(b) 3DBL. 
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In the case of the 3D channel, the TKE, Reynolds shear 
stress and drag eventually recover as the near-wall structures 
realign themselves in the direction of the mean shear. Sym- 
metry is restored in the Reynolds stress production, and the 
stress-strain lag angle returns to zero. In 3DBLs where mean 
three-dimensionality is maintained in a stationary state (such 
as the Ekman layer or the flow over a rotating disk), the lag 
angle remains finite and the efficiency of the flow in generating 
turbulence is generally reduced, as implied by the decrease in 
the stress/energy ratio often observed in these flows. 

4. Summary and conclusions 

DNS of a channel with a spanwise-moving wall has been 
used to examine the effects of mean three-dimensionality on 
near-wall turbulence structures that lead to reduced turbulence 
intensity and drag. PDFs and conditional-averaged quadrant 
analysis reveal that the three-dimensionality affects positive 
and negative vortices in different ways, thus destroying the 
spanwise symmetry of the turbulence structures. Visualizations 
show that the asymmetries arise due to temporary changes in 
the shapes of the vortical structures, and the reduction in 
streak size and strength are due to the alignment of the vortices 
being altered. The mean spanwise shear also increases the TKE 
dissipation by causing wall-normal layering of the streaks. 
These effects reduce the ability of the mean velocity gradient to 
sustain the turbulence, resulting in the reductions in TKE and 
drag characteristic of 3DBLs. 
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An a priori study of the subgrid-scale (SGS) stresses and dissipation in two nonequilibrium, 
wall-bounded flows is carried out. The velocity fields were computed by direct simulations of two- 
and three-dimensional boundary layers obtained, respectively, by a sudden change in the Reynolds 
number and by an impulsive motion in the spanwise direction of the lower wall of a plane channel 
in fully developed turbulent flow conditions. Several realizations of the transient period of the flow 
were examined. The SGS stresses react to the imposition of the secondary shear more rapidly than 
the large-scale ones, and return to equilibrium before the resolved stresses do. In general, the 
subgrid scales are less sensitive than the large ones to the near-wall and nonequilibrium effects. 
Scale-similar and dynamic models appear well-suited to reproduce the correlation between resolved 
Reynolds stress production and events with significant production of SGS energy. © 1997 
American Institute of Physics. [SI 070-6631(97)01208-7] 

I. INTRODUCTION 

Large-eddy simulations (LES) of the Navier-Stokes 
equations are based on the assumption that the small, subgrid 
scales of motion are more universal than the large, energy- 
carrying ones, less affected by the boundary conditions, and, 
therefore, easier to model. Since in LES only the largest 
structures are computed, coarser grids can be used than in 
direct simulations, and higher Reynolds number flows can be 
studied at a fraction of the expense. Moreover, the modeling 
of the small scales in principle is simpler than the modeling 
of all the scales of motions required by Reynolds-averaged 
(RANS) calculations, and, therefore, better accuracy can be 
achieved, especially in three-dimensional flows for which 
most turbulence models (especially two-equation models) 
are known to be inadequate. 

Since the small scales tend to be more homogeneous and 
isotropic than the large ones, simple models should be able 
to describe their physics fairly accurately. Furthermore, since 
the subgrid-scale (SGS) stresses are a small fraction of the 
total stresses, modeling errors should not affect the overall 
accuracy of the results as much as in the Reynolds-averaged 
turbulence modeling approach. For these reasons, most sub- 
grid scale models in use presently are eddy-viscosity models 
that relate the subgrid-scale stresses, Ttj, to the large-scale 
strain-rate tensor Sy. The eddy viscosity is given by the 
product of a length scale, /, and a velocity scale, qsgs. Since 
the most active unresolved scales are those closest to the 
cutoff, the natural length scale in LES modeling is the filter 
width, which is representative of the size of the smallest 
resolved structure in the flow, and is typically proportional to 
the grid size. The velocity scale is usually taken to be the 
square root of the trace of the SGS stress tensor, 
q]gs=Tkk. To determine q]gs in most cases the equilibrium 
assumption is exploited to obtain an algebraic model for the 
eddy viscosity.1 

The Smagorinsky model can be derived2 based on the 

observation that the small scales of motion have shorter time 
scales than the large, energy-carrying eddies; for this reason, 
it can be assumed that they adjust more rapidly than the large 
scales to perturbations, and recover equilibrium nearly in- 
stantaneously. Under this assumption, the transport equation 

for q]gs reduces to - TijSij = ev, where - ry5y is the pro- 
duction, and ev the viscous dissipation, of SGS energy. The 

negative of the production term, ssgs=Tij^ij> is °ften re~ 
ferred to as the "SGS dissipation," since it also represents 
the dissipation of resolved energy by the SGS stresses. This 
balance, together with the definition of the eddy viscosity, 
can be used to obtain the velocity scale. 

The equilibrium assumption implies inertial range dy- 
namics: energy is generated at the large-scale level and trans- 
mitted to smaller and smaller scales, where the viscous dis- 
sipation takes place. Very little testing of the applicability of 
this assumption to the small scales of turbulence is available. 
It is well known that in most flows of interest the large scales 
are not in equilibrium: Smith and Yakhot3 studied the short- 
time behavior of the eddy viscosity in the Reynolds-averaged 
framework, and found that 3£- e models do not predict the 
correct response of the eddy viscosity if homogeneous iso- 
tropic turbulence is suddenly subjected to a perturbation 
(system rotation or shear, for instance). They conjecture that 
SGS models will suffer from the same shortcomings unless a 
short-time correction is applied. The fact that the Smagorin- 
sky SGS model, applied to the study of homogeneous turbu- 
lence suddenly subjected to shear (Bardina et a/.4) gave re- 
sults in good agreement with the theory of Smith and 
Yakhot,3 however, indicates that the small scales tend to 
equilibrium faster than the large ones, and thus satisfy the 
equilibrium assumption better than the large scales do. This 
suggests that, at least in this flow, as long as the correct 
nonequilibrium response of the large scales is captured, the 
overall development may be predicted with satisfactory ac- 
curacy even by equilibrium-based SGS models. In more 
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complex flows, in which extra strains, backscatter, intermit- 
tency, and other phenomena play a role, it is not known 
whether the small scales would still be represented ad- 
equately by equilibrium-based subgrid-scale models. 

The purpose of this paper is to study the physical behav- 
ior of the subgrid scales of motion in situations of strong 
perturbation from equilibrium by a priori testing. Two cases 
will be studied: The first is a fully developed plane channel 
flow in which the viscosity is suddenly decreased to acceler- 
ate the flow, which reaches equilibrium at a higher Reynolds 
number; the second, a three-dimensional, shear-driven 
boundary layer,5 obtained by moving the lower wall of a 
fully developed plane channel flow in the spanwise direction. 
Both flows are initially equilibrium flows that approach an- 
other equilibrium state, and thus allow comparison of the 
response of both large and subgrid scales to the perturbation, 
and their return to equilibrium. 

Furthermore, the performance of several models will be 
compared. The models chosen are the Smagorinsky model,1 

the dynamic eddy-viscosity model,6'7 and two scale-similar 
models.8,9 Both the Smagorinsky and the dynamic model are 
eddy-viscosity models; the model coefficient in the former is 
set a priori, while in the latter it is adjusted according to the 
energy content of the simulation. Thus the dynamic model 
should be able to adjust more rapidly than the Smagorinsky 
model to the perturbations. Scale-similar models use the 
smallest resolved scales to parametrize the unresolved ones. 
They are based on the hypothesis that the most important 
interactions between resolved and unresolved scales occur 
between the eddies closest to the cutoff wave number. This 
dependence on the model on the smallest resolved scales will 
also be shown to have beneficial effects for the prediction of 
the response of the SGS stresses to perturbations. 

In the next section the governing equations and the 
mathematical approach will be presented. The results of the 
a priori test will be presented is Sec. III. Some conclusions 
will be drawn in the last section. 

II. PROBLEM FORMULATION 

A. Governing equations 

In LES dependent flow variables are divided into a grid- 
scale (GS) part and a subgrid-scale (SGS) part by the filter- 
ing operation 

/(*) = f /(*' 
JD 

)G(x,x')d\', (1) 

where D is the computational domain, and G is the filter 
function. The application of this operation to the continuity 
and Navier-Stokes equations yields the equations that gov- 
ern the evolution of the large, energy-carrying scales of mo- 
tion: 

dut 

~dT 

dtij 

dx, 

+ *r,iu'uJ)=' 

■=o, 

1 dp 

P dx{ dx. 
+ v 

d1ui 

dx ;dx;' 
(2) 

(3) 

where x (or xx) is the streamwise direction, y (or x2) the 
wall-normal direction, and z (or x3) the spanwise direction; 
u, v, and w (or uu u2, and u3) are the velocity components 
in the coordinate directions. The effect of the small scales 

appears in the SGS stress term, rij=uiu 
must be modeled. 

I"J 
UjUj,  which 

B. Subgrid-scale stress models 

In the past, two main types of models have been used to 
parametrize the SGS stresses: eddy viscosity and scale- 
similar models. Eddy-viscosity models represent the aniso- 
tropic part of the SGS stress tensor as 

Sij 
-^rTkk=-2vTSij, (4) 

where vT is the eddy viscosity and Stj is the large-scale 

strain rate tensor 

1IdUj     du 

dx. SiJ~2\dxi 
+ 

The assumption that -TijSij = ev, where 

dui dut    dui du/ 

dXj dXj dxj dXj 

(5) 

(6) 

(7) 

allows the eddy viscosity to be written as1 

vT=(CsA)2\S], 

where \S] = (2SijSij)
m, A is the (grid-scale) filter width, 

and the Smagorinsky constant, Cs, can be determined by 
integrating the vorticity spectrum function over all the unre- 
solved wave numbers.2 In practice, the value of the constant 
is substantially reduced in the presence of shear, and van 
Driest10 damping is used to account for near-wall effects; the 
eddy viscosity thus becomes 

VT=lCsA(l-e-y+/25)]2\S], (8) 

where y+=ywuT/v, yw is the distance from the wall, and 
C^O.065-0.1. 

Recently, dynamic models have been introduced that ad- 
just the coefficient locally and instantaneously from the en- 
ergy content of the smallest resolved scales.6 These are gen- 
erally Smagorinsky-like models in which the coefficient C is 
determined based on the energy content of the smallest re- 
solved scales of motion. In this work, the plane-averaged 
formulation,7 which has been applied successfully to the 
simulation of transitional and turbulent plane channel 
flows6'11 will be used, in which the SGS stresses are given by 

(4), with vT=CA2\S], and 

C=- 
1   {^ijMi) 

(9) 
2 (MmnMmn)' 

where (•) denotes an average taken over planes parallel to 

the wall, SZij = ü~iü~j-uiUj are the resolved turbulent 

stresses, M{j = A2| S] S^- A2|5|5/;-, and a hat denotes the ap- 

plication of a filter with width Ä = 2A. 
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■ Scale similar models also use the energy content of the 
smallest resolved scales of motion to predict the behavior of 
the SGS stresses. In this work, two such models will be 
tested, the one originally developed by Bardina et al.:s 

Tij=ÜiÜj— UtUj (10) 

and the one recently proposed by Liu et al. :9 

T,j=CL&tJ; (11) 

Liu et al.9 recommended a value CL = 0A5. The coefficient 
can also be adjusted dynamically. 

C. A priori tests 

In a priori tests the resolved velocity fields obtained 
from direct simulations of the Navier-Stokes equations are 
filtered explicitly according to (1) to yield the exact SGS 
quantities of interest. Two filter functions are considered in 
this study: the sharp cutoff filter in Fourier space and the box 
(or tophat) filter in physical space. The sharp cutoff filter is 
best defined in Fourier space as: 

g(k) = I  G(x')e-'kx'dx' = 
JD 

1,    ifjt=£<n7A, 

0,    otherwise, 

while the box (or top hat) filter is 

'1/A,    if |x|=£A/2, 

0,        otherwise. 
G(x) = 

(12) 

(13) 

Three DNS databases were used in this work: the first is 
the DNS of a two-dimensional plane channel flow at 
ReT=\80 (based on friction velocity uT and channel half- 
width S), computed using a pseudo-spectral code with 
128X97X128 grid points and a computational domain of 
4TTSX2SX4TTS/3. The results of this calculation were 
shown by Piomelli et al.n to be in good agreement with the 
direct numerical simulations (DNS) of Kim et al.13 The ac- 
celerating channel case was computed using the same 
pseudo-spectral code; the flow was started from a steady- 
state field at ReT= 150 (based on the initial friction velocity 
uT0 and viscosity v0); the Reynolds number was then sud- 
denly increased, and a new equilibrium state was reached at 
ReT=225 aWwTO/<5=1.2. 

The shear-driven three-dimensional boundary layer ve- 
locity fields were obtained from the calculations by Coleman 
et al.5 using the spectral code of Kim et a/.13 The computa- 
tional domain was 47r<5x2<5x87T<S/3 in the streamwise (X[ 
orx), wall-normal (x2 or y), and spanwise (x3 or z) direc- 
tions, respectively, and 256X129X256 grid points were 
used. An impulsive spanwise motion, with magnitude equal 
to 47% of the initial mean centerline velocity, was applied to 
the lower wall of a fully developed plane channel flow; the 
initial condition was obtained from the calculation at Rey- 
nolds number Rer= 180. The flow was allowed to develop 
until a collateral state (one in which the new direction of the 
mean velocity is the same at each y) was reached. Notice 
that, since periodic boundary conditions were used, the 
boundary layer due to the spanwise motion of the wall grows 
in time rather than in space. 

a 

0.1 

0.0 

-0.1 
0.1 

(a) 

0.0 

-0.1 

(b) 

20 40 80 100 
y 

FIG. 1. Terms in the SGS kinetic budget in the two-dimensional plane 
channel flow, ReT= 180, normalized by u, and v. Tophat filter. • ■ ■ •, 
production; -•-■-•, viscous dissipation; , viscous diffusion; , re- 

maining terms, (a) A, = 4A;c,; (b) A, = 2Ajr,-. 

The exact GS and SGS fields were obtained by filtering 
the DNS data over the streamwise and spanwise homoge- 
neous directions using different filter types and sizes. A typi- 
cal test performed using the Fourier cutoff filter employs a 
filter width A, = 4Ax,- (for i=\ and 3); for the box filter 
widths A,-= 2Ax,- and A, = 4Ax; were used. With these val- 
ues, the ratio of SGS to total fluctuating energy was 15%- 
25%, a range representative of actual LES calculations. No 
significant difference was observed between the results for 
the two filters. 

All the data shown in the following were averaged over 
several realizations of the flow fields in question, as well as 
over planes parallel to the wall. Since the expense required to 
generate ensembles of data in this type of unsteady flows is 
significant, the sample size in some cases is insufficient to 
obtain fully converged results. However, the purpose of the a 
priori test is only to supply physical insight into the phenom- 
ena that affect the subgrid scales and identify the trends; for 
this purpose, the sample size is adequate. 

Two normalizations will be used: one in which all quan- 
tities are made dimensionless using the initial friction veloc- 
ity «T0 and molecular viscosity v0. In the other the time- 
dependent values of the friction velocity uT and viscosity v 
are used. Quantities made dimensionless by the latter nor- 
malizations will be denoted by a prime. 

III. RESULTS AND DISCUSSION 

A. Plane channel flow 

In Fig. 1 the terms in the budget of the SGS kinetic 
energy 3&sgs = rkkl2 are shown for the two-dimensional 
plane channel flow as a function of y +. The assumption that 
production and dissipation of SGS energy are in balance 
holds well outside the viscous sublayer (y + >30), and only 
very near the wall are nonlocal effects important. This is 
consistent with the finding that, in the core of the flow, dy- 
namic eddy-viscosity models yield a value for the model 
coefficient close to that obtained using the equilibrium as- 
sumption and a Kolmogorov form of the spectrum." It 
should also be pointed out that in the budget for the total 
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FIG. 2. SGS kinetic energy, viscous dissipation, and eddy turnover time in 
the two-dimensional plane channel flow, ReT= 180, normalized by uT and v. 
Fourier cutoff filter. , A,~»°°; , A, = 8Ax;; , A,-4Ax;; 
• • • •, A, = 2Ax,-. (a) SGS kinetic energy; (b) viscous dissipation; (c) 

^gJ
el 

kinetic energy, at this Reynolds number, production and dis- 
sipation are not in balance near the wall, where the various 
diffusion terms are significant;14 in the outer region the tur- 
bulent transport term is not negligible. Only at much higher 
Reynolds number does behavior like that observed here for 
the SGS energy become apparent. This point further supports 
the equilibrium assumption for the small scales. 

When homogeneous turbulence is suddenly subjected to 
mean shear, its short-time response is characterized by a lag 
between the imposition of the strain and the increase in tur- 
bulent kinetic energy due to the increased production. Smith 
and Yakhot3 accounted for the lag, within the framework of 
S£- e models, by introducing an exponential correction to 
the eddy viscosity, which includes a time constant, the eddy 
turnover time T—S&IE. In the context of LES, in which the 
SGS model only represents the scales smaller than the filter 
width, a relevant eddy turnover time must be defined in 
terms of SGS quantities only, and could depend on the filter 
width. In Fig. 2 such an eddy turnover time, defined in terms 
of 3&sgs and e„ is shown as a function of distance from the 
wall for the two-dimensional channel; the Fourier cutoff fil- 
ter was used. The plane-averaged values (A,-—>») are 
equivalent to long-time averages and thus represent the eddy 
turnover time relevant to 3£- e models. Both SGS energy 
and viscous dissipation decrease as the filter width is de- 
creased; the SGS turnover time is, however, fairly indepen- 
dent of the filter width, and, except very near the wall, is 
equal to about 50%-60% of the Reynolds-averaged turnover 
time. While the subgrid scales can be expected to react more 
rapidly than the largest scales of motion, their response to a 
perturbation is not instantaneous. Accounting for this adjust- 
ment time could improve significantly the accuracy of SGS 
stress models. 

fc< 

100 

FIG. 3. SGS and large-scale energy, normalized by uTi0 . Accelerating chan- 
nel   flow,   top   hat   filter,   A, = 2Ax,-.     ,   rwro/<5=0.06; , 
tuTiO/S=0.32; -   ■   -   ■   -   ■  , tuTj0/S= 0.52; ■  ■ ■  •', tuT,J8=0.10. (a) 
SGS energy; (b) large-scale energy. 

the Reynolds number. Consequently, one would expect the 
high-wave-number region of the velocity spectra to fill up, 
and the small scales should be affected more than the large 
ones by the perturbation. 

In Fig. 3 large-scale and SGS kinetic energy profiles are 
shown at various times during the transient. While the maxi- 
mum total kinetic energy, M~+ 3£sgs increases only by 25%, 
the subgrid-scale energy increases by more than a factor of 2. 
Similarly, the production of SGS energy (not shown) in- 
creases roughly by a factor of 3 during the transient, while 
the production of large-scale energy at the last time exam- 
ined (tuTt0/S= 0.58) is only 30% higher than before the per- 
turbation was applied. 

If the time-dependent value of the friction velocity is 
used to normalize the data instead of the initial one, a differ- 
ent trend is observed: the SGS turbulent kinetic energy (Fig. 
4) quickly reaches a new equilibrium value (roughly at 
tuT0/S—0.3) and is thereafter nearly independent of time, 
while the large-scale quantity requires a much longer time to 
reach a new equilibrium state. This is another strong indica- 
tion that the small scales tend to adapt to the perturbation 
much faster than the large scales do, since the former react to 

■J 0.5 

I* 

100 

B. Accelerating Channel flOW FIG- 4- SGS and larf "sf'e ener^ normalized by «r. Accelerating channel 
flow, top hat filter, A, = 2Ax,.. , tu T0/8=0.06; , tuTa/8=0.32; 

In the accelerating channel flow the perturbation that dis- , tuTJ8=0.52; ■ ■ ■ -, tu ro/8=0.10. (a) SGS energy; (b) 

rupts the equilibrium state consists of a sudden increase of      large-scale energy. 
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FIG. 5. Production of SGS and large-scale energy, normalized by uT and 
v.    Accelerating    channel    flow,    tophat    filter,    A, = 2A;r/. , 

tu TO18=0.06; , tu 70l 8=0.1,1; -   ■ , turo/S=0.52; ■  ■ ■  •, 
tuT „I 8=0.10. (a) Production of SGS energy; (b) production of large-scale 
energy. 

100 

the "current state" (represented by the time-dependent ve- 
locity scale uT) fairly rapidly, whereas the large scales adapt 
more slowly. The production of SGS and large-scale energy 
also exhibit a similar trend (Fig. 5). 

One of the main purposes of SGS models is to dissipate 
the correct overall amount of energy from the resolved 
scales. The total energy drain is the negative of the integral, 
over the wall-normal direction, of the (time- and plane- 
averaged) production of SGS energy. The time development 
of this quantity, together with the integral of the large-scale 
production, is shown in Fig. 6(b); in Fig. 6(a) the integral of 
the large-scale and SGS energy is shown. Under the time- 
dependent normalization (wT and v) the subgrid-scale pro- 
duction and energy do not vary as much as when they are 
normalized by the initial uT and v, indicating that they are 
better described by the local state of the turbulence; by con- 
trast, the large-scale quantities vary less when normalized by 
the initial friction velocity and viscosity. 

In Fig. 7 profiles of - 8sgs are compared with those ob- 

FIG. 7. Wall-normal distribution of the exact and modeled production of 
SGS energy, normalized by uTi0 and v0 . Accelerating channel flow. Tophat 
filter,  A, = 2Ax;.   A   Exact;   ,  dynamic  eddy viscosity  model;6,7 

- - - -, Smagorinsky model1 [Eq. (8)]; , scale similar model;9 • • • •, 
scale similar model.8 (a) turoIS=0; (b) tuT<J8=0.11; (c) tuTOl 8=032. 

tained from several models. The Smagorinsky model not 
only provides excessive levels of the production throughout 
the channel, but also does not predict accurately the increase 
in production that follows the imposition of the perturbation. 
The time development of the production of SGS energy in- 
tegrated over the channel height is shown Fig. 8; the integral 
normalized by its initial value [Fig. 8(a)] indicates that the 
scale-similar models8'9 and the dynamic model6'7 follow the 
trend more closely. The unnormalized values [shown in Fig. 
8(b)] indicate that the scale-similar models tend to underpre- 
dict the production of SGS energy, consistent with the find- 
ings of Bardina et al.f who developed the mixed model, 
which includes a dissipative as well as a scale-similar part, to 
overcome this shortcoming. 

■ö 

f I1 
0 
3 

■§> 
e>" 2 

(a) 

(b) 

0.0 0.3 0.6 
tu,../ö 

0.9 1.2 

FIG. 6. Time development of the integral of the large-scale and SGS quan- 
tities normalized by their initial values. Accelerating channel flow. Tophat 
filter, A, = 2A.x,. Lines without symbols: quantities normalized by uro and 
v„ ; lines with symbols: quantities normalized by uT and v. (a) , Large- 

scale energy; , SGS energy, (b) , Production of large-scale en- 

ergy; - - - -, production of SGS energy. 
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FIG. 8. Time development of the integral of the production of SGS energy. 
Accelerating channel flow. Tophat filter; A, = 2 Ax,. A Exact; , dy- 

namic eddy viscosity model;6,7 , Smagorinsky model1 [Eq. ( 8)]; 
 , scale similar model;9 • • • •, scale similar model.8 (a) Normalized 
by its initial value; (b) unnormalized. 
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FIG. 9. Time development of exact and modeled production of SGS energy. 
Accelerating channel flow. Tophat filter, A, = 2 Ax,-. All quantities are nor- 
malized by uro and v, and their initial value. AExact; , dynamic eddy 

viscosity model;6'7 - - - -, Smagorinsky model1 [Eq. (8)]; scale simi- 
lar model;9 • ■ • •, scale similar model.8 (a) y + = S; (b) y+=tt; (c) 
^ + = 31;(d)y+=110. 

The increased production predicted by the Smagorinsky 
model is particularly significant in the near-wall layer, where 
the scale-similar and dynamic models predict the response to 
the perturbation fairly accurately (Fig. 9). In the buffer layer 
and above the perturbation does not appear to have such a 
strong effect. 

The principal shortcoming of eddy-viscosity models is 
the fact that the time scale, | S]~', is mostly affected by the 

large scales; thus they do not, in general, respond well to 
perturbations that affect mostly the small scales. This is the 
reason for the poor performance of the Smagorinsky model 
in this flow. The dynamic eddy-viscosity model appears to 
compensate for this deficiency by adjusting the model coef- 
ficient according to the state of the smallest resolved scales; 
the scale-similar models have a similar behavior. This is evi- 
denced in Fig. 10, in which the development of the kinetic 
energy spectrum at y + = 13 is shown. The increase in energy 
at the high wave numbers is apparent. The scales that con- 
tribute most to the resolved turbulent stresses i^y (to a first 
approximation, the wave numbers contained between the two 
ellipses in the figure) also increase significantly during the 
transient, more so than the largest scales of motion (the con- 
tours near the origin), which remain essentially unchanged. 
Thus it appears that the double filtering operation employed 
by both dynamic and scale-similar models is beneficial in 
isolating the scales that most closely represent the smallest 
scales of motion. 

C. Three-dimensional boundary layer 

Similar results were obtained from the three-dimensional 
boundary layer simulation. In this flow the perturbation is 
applied more gradually, and is also localized in space (at the 
wall), while the Reynolds number change of the previous 
flow is felt everywhere. The SGS energy (Fig. 11) can be 
observed to react more quickly to the imposition of the per- 
turbation than the large-scale energy (especially near the 
wall), but the phenomenon is not as clear as in the preceding 
case, due to the local nature of the perturbation. 

The more accurate predictions obtained by the dynamic 
and scale-similar models are evidenced in Figs. 12 and Figs. 

(a) 

i    (c) 

-30       -20       -10 10        20        30 

(b) 

-g^sfl     (d) 
10        20        30 

FIG. 10. Kinetic energy spectra (normalized by uTj0) zty+ = 13. Accelerating channel flow. The contour levels are exponentially spaced between 10~7 (black) 
and 10° (grey); the two ellipses roughly correspond to the grid- and test-filter wave numbers, (a) tuT,oIS=0; (b) tuTO/S=0.\3; (c) tu,_0/'(5=0.32; (d) 

fuTi<)/«S=0.58. 
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FIG.   11.   SGS  and  large-scale  energy,   normalized  by  uro.   Three- 
dimensional boundary layer. Tophat filter, A,-=2AATJ. , tuTO/8=0; 

 , tuTi018=0.015; - , ft« ,.„/£= 0.15; • ■ • •, tuT.„/S=0.30, — 
 , tuTO/3=0.75. (a) SGS energy; (b) large-scale energy. 

13, in which, respectively, the integrated production of SGS 
energy, -esgs, and its development at several wall-normal 
locations are shown. The Smagorinsky model initially pre- 
dicts increased production in the near-wall region (instead of 
the reduced dissipation that is observed in the DNS data), 
reflecting the imposition of the transverse shear dW/dy, 
which gives an increase in the eddy viscosity. The other 
models follow the correct trend, because the smallest re- 
solved scales are used to evaluate the coefficient. This is 
confirmed by the kinetic energy spectra (Fig. 14), which 
show features similar to those observed in the accelerating 
channel flow. The scales included between the two filters 
behave in a manner very similar to the unresolved scales. 

Another useful feature of scale-similar models is that 
they parametrize the unresolved scales in terms of the small- 
est resolved ones, which have been shown15-17 to be respon- 
sible for most of the energy transfer between resolved and 
unresolved scales. Piomelli and co-workers12 observed sig- 
nificant correlation between regions of high Reynolds stress 
and production of SGS energy. This correlation can be ob- 
served in the present data as well. Figure 15 compares con- 
tours of total production and production of SGS energy. A 
strong   correlation   can  be   observed  between  the  exact 

1.80 

FIG. 12. Time development of the integral of the production of SGS energy. 
Three-dimensional boundary layer. Tophat filter, A, = 2Ax,. All quantities 
are normalized by uTi0 and v, and their initial value. A Exact;        , dynamic 

eddy viscosity model;6,7 , Smagorinsky model' [Eq. (8)]; , scale 
similar model;' • • • •, scale similar model.8 
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FIG. 13. Time development of exact and modeled production of SGS en- 
ergy. Three-dimensional boundary layer. Tophat filter, A, = 2Ax,-. All quan- 
tities are normalized by «T0 and v, and their initial value. A Exact;        , 

dynamic eddy viscosity model;6,7 , Smagorinsky model1 [Eq. (8)]; 
 ■, scale similar model;9 • • • ■, scale similar model.8 (a) y+ = 8; (b) 
>+= 13; (c)y+ = 31; (d)^ + =110. 

- esgs and the total production; this correlation is reproduced 
well by the scale-similar model, but less accurately by the 
eddy viscosity model, which, being statistical in nature, can- 
not be expected to be as successful in reproducing determin- 
istic events of the type responsible for the distribution of 

IV. CONCLUSIONS 

The velocity fields obtained from the direct simulation of 
two nonequilibrium flows, an accelerating channel flow and 
a three-dimensional boundary layer, were studied to deter- 
mine the response to perturbations of the subgrid scales of 
motion, and their return to equilibrium. 

The subgrid scales have a reduced turnover time com- 
pared with the resolved scales of motion. The fact that this 
time-scale is not a small fraction of the large-eddy turnover 
time is partly due to the low Reynolds number of the DNS 
data used in the present a priori study; in such situations, the 
strongest interactions between resolved and unresolved 
scales occur between structures within two octaves of the 
cutoff wave number. At high Reynolds numbers, when 
widely separated scales are present, this local interaction 
may be less dominant, but is still expected to be relevant. 

In both flows under consideration, equilibrium turbu- 
lence is perturbed, and a new equilibrium is reached. In both 
cases the subgrid scales reach the new equilibrium substan- 
tially faster than the large, resolved, ones. However, the re- 
turn to equilibrium of the subgrid scales requires a finite time 
and is not instantaneous. 

From a modeling point of view, this result indicates that 
SGS models would benefit from incorporating nonequilib- 
rium behavior to predict more accurately engineering flows, 
in which a variety of effects (pressure gradients, secondary 
shear, etc.) may act to perturb the canonical flows. An effi- 

2746        Phys. Fluids, Vol. 9, No. 9, September 1997 

r>Aiiinln^Hor<  ft?  Mow OflfH   >/N  1 OO Q7  O ">1 T    DraWiotriK. .»ior.  , 

Piomelli, Coleman, and Kim 



80 
..-« *~.'- ":^^'&„ 

40 c^a^*-^^^* '^'^% 
-71          '\          '*'' /-■•'  ■'_^ir4^J    '"\ '"v       '''"*        ^ 
"\'i    ;i / -f 'i/v?-'' ^V  !' % ;?"fi- 1 

' 0 ' '"'S "*' I; v' \f ' •'   '•■>/. ;' JX^i 

i-':S"""'0<? ':'^'.;l^&Cf-S   i 
--*> -^ -J--^J.;-,-.-^?*** iiü^.'t tg^^ JP     •;■'*           .? 

^Es—-.        -■--.-,** —     ,..   ,--■■"■--"'j-'-v'C — 

-80 (a) 

-30       -20       -10        0 10        20 30 

80 

•«"0 

-40 

-80 W 

-30       -20       -10        0 
it. 

10        20        30 

80 . 
~ ^-^d'.-«*-«" •—..> -^ 

■sT^" -   ,-:..-- ^;---—--,    ->-.,   . ,\7V       -'"'            ,--,^—' .-      A^.   — ^ 
40 

; <V'^-J/|i^~^S^\,'^^,? 
-v" 0 "\,V"H.,K " I         -7'"' J; 'A ^ 

*^T_      ^:;.    ?=^-, '~'-. '-•''""" _.-""""""*>£--""     '>"'         --1 

-40 
~  ""^^   ■"""'*—*™-, ;>-!.....* ~£*"*    „.-js£ 

-80 
,                    ■                    i                    .                                 .    .    . 

w 
-30       -20       -10 0 10 20 30 

80 • 

-40 

-80 

~"3^l?r=—  

'    c*: " :"-r -^'3L '•^frf^-^ ^\^v 

'\ji S"$/ Äü 
"-■ —..-l-^-^^^ 

.                               !....>                  .1.1 
w 

-30       -20       -10        0 10        20        30 

FIG. 14. Kinetic energy spectra (normalized by uT) at y += 15. Three-dimensional boundary layer. The contour levels are exponentially spaced between 
10"7 (black) and 10° (grey); the two ellipses roughly correspond to the grid- and test-filter wave numbers, (a) tuT_o/S=0; (b) tuTOl 8=0.\A\ (c) 
tu ro/8=0.29; (d) tuTO/8=0.60. 

cient and inexpensive way to take those effects into account 
is to use the smallest resolved scales to parametrize the un- 
resolved ones, as is done in scale-similar and dynamic mod- 
els. These models have been found to respond more accu- 
rately to perturbations than models, like the Smagorinsky 
model, that are mostly affected by the largest scales of mo- 

tion. The present results further confirm the robustness of 
dynamic SGS models in computing nonequilibrium flows. 

While the dynamic eddy viscosity model predicts the 
overall levels of energy drained from the large scales quite 
accurately, scale-similar models are much more effective at 
representing the correlation between the production of large- 

600 

250   500   750   1000 

400 

200 

M 
500   750   1000 <b) 

600 

200 

250   500   750   1000 

600 

(c) 
250 500 750 1000 (d) 

FIG. 15. Spatial distribution of the large-scale and SGS energy production on the v + = 12 plane at tuTiO/S=0.3. Three-dimensional boundary layer. Tophat 
filter, A, = 2Ax,. All quantities are normalized by uro and v. Positive contours are grey, negative are black, (a) Total production, «,'»,'(<?£/,•/Ac,); contour 
level intervals are ±0.8. (b) Production of SGS energy (exact); contour level intervals are ±0.06. (c) Production of SGS energy (dynamic eddy-viscosity 
model6'7); contour level intervals are ±0.06. (d) Production of SGS energy (scale similar model9); contour level intervals are ±0.06. The ellipses highlight 
regions of significant production. 
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scale energy and production of SGS energy that has been 
observed in these nonequilibrium flows, and also in the near- 
wall region of equilibrium boundary layers.12 Mixed models, 
which combine a scale-similar model with a dissipative, 
eddy-viscosity term, are likely to be very effective parametri- 
zations of the SGS stresses in nonequilibrium flows. 
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A numerical study of three-dimensional 
wall-bounded flows 
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Nonequilibrium three-dimensional (3-D) turbulent boundary layers are studied using direct 
numerical simulation (DNS). Time-developing flows are used to investigate the physics of 
spatial-developing ones. We find that application of a spanwise shear leads to the reduc- 
tion of both the turbulent kinetic energy and drag, with the most dramatic reduction of the 
latter occurring when the shear is applied between y + ~ 5 and 15. When the three-dimen- 
sionality is produced by transverse skewing, the resulting alteration of the relationship 
between the Reynolds stresses is associated in large part with the effect of the pressure 
gradient upon the amplification or attenuation of the turbulent kinetic energy. 

Keywords: turbulence; direct numerical simulation; channel flow; three-dimensional 
boundary layers 

Introduction 

Flows over swept-wing aircraft, within turbomachines, and over 
hulls of marine vehicles all share a common feature: their 
velocities change not only magnitude but also direction with 
distance from the surface. Thus, they can all be classified as 
three-dimensional (3-D) boundary layers (3DBL), the subject of 
the present study. Here our attention is limited to the nonequi- 
librium case, in which the 3DBL is created by an abrupt change 
of the mean flow to which the turbulence has not yet adjusted. 
This choice is motivated by its relevance to many technically 
important flows (such as the three cited above), and by the fact 
that the physics of nonequilibrium 3DBLs is not well understood. 
For example, when an initially two-dimensional (2-D) equilib- 
rium boundary layer is suddenly subjected to a spanwise shearing 
force by the impulsive motion of the surface, the resulting 
nonequilibrium flow can experience a decrease of turbulent ki- 
netic energy (see below); because the addition of a mean strain 
typically causes the turbulence to become more energetic, this 
behavior is somewhat paradoxical. On the other hand, when the 
mean streamwise vorticity appears, not because of a moving wall, 
but by skewing of spanwise vorticity with a transverse strain (such 
as that produced by a curved duct) that deflects the entire layer, 
the turbulent kinetic energy has been observed to both increase 
(Schwarz and Bradshaw 1994) and decrease (Bradshaw and Pon- 
tikos 1985), presumably depending upon the nature of the 
streamwise pressure gradient. Moreover, regardless of whether 
the three-dimensionality is due to surface shear or transverse 
straining (i.e., for both the "shear-driven" and "pressure-driven" 
versions), the "structure" of the Reynolds stresses is usually 
altered, because the ratio of the turbulent shear stress magnitude 
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to the turbulent kinetic energy decreases. This implies that 
turbulence in nonequilibrium 3DBLs is "less efficient" at extract- 
ing energy from the mean. 

These observations illustrate the difficulty associated with 
correctly modeling 3DBLs. Another problem, related to the 
"structural" one mentioned above, is that as the turbulence 
reacts to the imposed crossflow, the Reynolds stresses do not 
instantaneously adjust to changes in the mean shear. Therefore, 
models based on an isotropic eddy-viscosity, or, indeed, any 
concept developed for 2-D equilibrium boundary layers, cannot, 
in general, be assumed to be valid for this flow. It is hoped that 
this study, in which we perform numerical experiments on 
"canonical" 3DBLs in an attempt to isolate various effects of 
three-dimensionality, will remove some of these modeling uncer- 
tainties by improving our understanding of the physics of 
nonequilibrium 3DBLs. 

Approach 

Three flow configurations are considered, with the mean three-, 
dimensionality created by shear for the first two, and by trans- 
verse strain for the third. All three assume a plane channel 
geometry and are studied using direct numerical simulation 
(DNS); because all relevant scales of motion are resolved, no 
turbulence or subgrid-scale model is needed. The shear-driven 
cases (denoted here by an SD prefix) are the result of impulsive 
motion of the lower channel wall, either by suddenly imposing a 
constant spanwise velocity ws upon fully developed 2-D Poiseuille 
flow or by suddenly stopping the wall after the turbulence has 
adjusted to the wall motion. The runs subjected to transverse 
strain (indicated by prefix TS) utilize a constant uniform irrota- 
tional mean deformation dU/dx= -dW/dz in the stream- 
wise-spanwise (x-z) plane. This deformation represents either a 
streamwise expansion or contraction, and thus corresponds to 
either a favorable or adverse streamwise pressure gradient in a 
boundary layer. (The actual streamwise pressure gradient is 
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turned off during the straining.) Therefore, it produces, for a 
flow with nonzero mean spanwise velocity w, a skewed 3-D 
boundary layer that allows, for example, investigation of the 
"inviscid skewing" mechanism (Bradshaw 1987). (Throughout 
this paper, the terms streamwise and spanwise are used respec- 
tively to indicate the x- and z-directions, and and u- and w-com- 
ponents of velocity, even when the x-axis does not correspond to 
the actual downstream direction of the mean flow; the y-coordi- 
nate denotes the wall-normal direction, and v, the wall-normal 
velocity.) Whereas previous DNS studies have assumed both the 
strain and turbulence were homogeneous (Rogallo 1981), here 
we apply the uniform strain to turbulence between two no-slip 
surfaces. For this we deform both the flow and the (elastic) 
channel walls. Consequently, the near-wall turbulence for the 
present and actual skew-induced 3-D boundary layers will not 
always correspond. Nevertheless, because the outer flow behav- 
ior is of primary interest for this type of 3DBL, the transversely 
strained results are expected to be useful, especially for differen- 
tiating between physics of the shear-driven and pressure-driven 
cases. 

The results to follow have been obtained using the spectral 
channel-flow code of Kim et al. (1987), after it was modified to 
compute the cases described above. All variables are nondimen- 

Table 1    Case parameters 

Case ws u, dU/dx IC 

SD1 -8.5 0 0 2D* 
SD2 0 0 0 collateral 
SD3 0 +8.5 0 2D* 
TS1 -8.5 0 -100 collateral 
TS2 -8.5 0 +100 collateral1 

*Kim et al. (1987); ^ase SD1 at f= 1.73 

sionalized by the channel half-width 8*, and (in order to high- 
light changes in time) the constant wall-shear velocity from the 
2-D Poiseuille flow initial condition. Because of the time-depen- 
dence of the results, mean quantities (denoted by an overbar) are 
obtained by averaging over planes parallel to the walls, and for 
Case SD1 also over three independent simulations. A summary 
of case parameters is given in Table 1. In addition to those listed, 
a series of runs using a time-independent spanwise shear are also 
discussed (see Table 2 below). Three sets of numerical parame- 
ters are used: for Cases SD1, SD2, TS1, and TS2, the streamwise 
and spanwise domain size L* and L* are 4TT8* and 8TT8*/3, 

Notation 

dUi/dx, 
h 

nx,ny,n2 

q1 

Re, 
S 
t 
T 

u,v,w 

u' </, 17] 

<«?>ic 

x,y,z 

y+ 

Greek 

Reynolds   stress   structure   parameter,   (u' v" • 
Fw2y/2/q2 

constant uniform rate of irrotational strain T| 
height  below which  constant  spanwise  shear  is 
applied 8 
streamwise and spanwise dimensions of computa- 
tion domain, respectively 
number of equivalent grid points in the streamwise, 
wall-normal, and spanwise directions, respectively 
twice the turbulent kinetic energy, u\u\ X 
Reynolds number, (u*)Kh* /v* 
magnitude of strain rate, (dt^/dx-l v* 
nondimensional time, r*(«*)ic/8* £ 
oscillation period of spanwise pressure gradient or 
spanwise wall motion (TX,T2)^ 
nondimensional streamwise, wall-normal, and span- 
wise  velocity  components,  respectively,   {u*,u*,      co 
**)/(«? )ic 
mean streamwise and spanwise velocities, respec-     Indices 
tively 
streamwise and spanwise Reynolds shear stresses, 
respectively 
constant  streamwise  and  spanwise  velocities of 
lower channel wall, respectively 
mean surface friction velocity of initial fully devel- 
oped 2-D Poiseuille flow field 
nondimensional streamwise, wall-normal, and span- 
wise coordinates, respectively, (x*,y*,z*)/b* 
distance from lower wall, (8* +y*)/h* 
nondimensional distance from the wall, y*u*/v* 

local skewing angle, arctan(50 
angle between the collateral flow and local skewing 
directions 

8* half-width of channel 
e rate of dissipation of turbulent kinetic energy 

L, Stokes's    second    problem    similarity   variable, 

t] Stokes's   first   problem   similarity   variable,   >'*/ 
2{v*t*y/2 

8 angular difference in orientation of skewed mean 
vorticity between cases with and without initial 
component of mean vorticity in pure skewing 
direction, as predicted by generalized Squire- 
Winter-Hawthorne relationship 

X angle between mean shear and Reynolds stress, 
arctan[(dw/dv)/(dw/dy)] - arctan(cV/i77/) 

v* kinematic viscosity 
£ eddy-viscosity   ratio,   [i''w'/(dw/dy)]/[ürv'/Oü/ 

By)] 
mean streamwise and spanwise shear, respectively, 
at y* = ± 8 (averaged over both walls) 
vorticity, </[(M* )ic/8*] 

Q* 
cr 
Q 

dimensional quantity 
quantity nondimensionalized by u* and v* 
average over (x, z)-planes (and where noted, over 
independent simulations) 

Q fluctuation component, Q-Q 
Qv variable measure at channel centerline 
g„. or Qs value of Q at lower wall, y* = - 8* 
Qic value from initial fully developed 2-D Poiseuille 

flow field 
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respectively, while the number of streamwise (nx) wall-normal 
in), and spanwise (n2) grid points is (nx, ny, nz) = (256,129,256); 
Case SD3 uses (L*,L*) = (4Tr8*,4-jr8*/3) and (n„nv,«z) = 
(128,129,128), while (L*,L*) = (4iT8*,4ir8*/3 and (nz,ny,nt) 
= (32,65,32) for the constant spanwise-shear simulations. The 
results presented below verify that with these parameters all 
essential scales of motion are fully resolved (see, for example, 
Figures 5, 6, 7, and 12, and compare diagnostics discussed in Kim 
et al.). 

Results: shear-driven cases 

Spanwise moving wall !ws =t 0) 

Three-dimensional boundary layers free of adverse pressure gra- 
dient effects can be created by introducing mean streamwise 
vorticity at the surface. We begin our examination of this so-called 
shear-driven case with Run SD1, for which an impulsive spanwise 
motion is applied to the lower wall of a stationary 2-D plane 
channel flow—hence, the '2-D' in the "IC" column in Table 1. 
The fully developed initial field is as described in Kim et al. 
(1987), with Reynolds number based on surface friction velocity 
and channel half-width ReT ~ 180. The boundary layer that de- 
velops above the moving wall is analogous to that found in 
rotating cylinder experiments (Furuya et al. 1966; Lohmann 
1976; Driver and Hebbar 1991) in the region where the longitudi- 
nal flow along the cylinder first encounters the rotating section. 
It is also similar to that found by Moin et al. (1990) and Sendstad 
and Moin (1992), who used DNS to study the transient response 
of a 2-D channel flow to a suddenly imposed spanwise pressure 
gradient. This similarity is no surprise, given that the effect of the 
spanwise pressure gradient is equivalent (because of the stream- 
wise homogeneity of the plane channel) to subjecting the walls to 
a uniform spanwise acceleration. Many of the results found here 
are qualitatively similar to those found earlier by Sendstad and 
Moin. There are fundamental differences, however, between the 
accelerating and constant-velocity wall flows: the equilibrium 
state of the former is a reoriented Poiseuille flow, while here the 
moving wall leads first to an equilibrium "collateral" boundary 
layer (a flow for which the (new) direction of the mean velocity 
remains constant in y), and eventually—once the spanwise shear 
diffuses across the channel centerline to the stationary wall—to 
an equilibrium skewed 3DBL Poiseuille/Couette configuration 
(because the direction of the mean velocity varies approximately 
linearly in y). (Had we set both walls in motion in the same 
direction, the final state would have been two equilibrium collat- 
eral boundary layers.) In this paper, we consider times shorter 
than those required for the spanwise mean shear to diffuse 
across the centerline; therefore, only the nonequilibrium-to-col- 
lateral transition. Another difference between the present and 
Sendstad and Moin's study is that, because they were interested 
only in the nonequilibrium state, their domain size and numeri- 
cal resolution were insufficient to capture their reoriented 2-D 
flow accurately, with its associated smaller streamwise scales. 
Here, however, because of the central role played by the collat- 
eral boundary layer, it is necessary to use numerical parameters 
sufficient to correctly represent both the transient and long-time 
behaviors. 

The imposed spanwise wall velocity for Case SD1, wz = -8.5, 
is about half the initial mean streamwise velocity at the center- 
line iic [and, therefore the collateral flow angle will be about 
26° » arctan(0.5)]. To avoid a discontinuity in y, an early-time 
Stokes solution for the impulsively started flat plate is used to 
specify the initial distribution of >v(y). At this Reynolds number, 
the iv-profile imposed at t = 0 corresponds to the Stokes solution 
at t = 0.0045. The resulting variation in time of the mean span- 
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Figure 1    Mean (a) spanwise velocity and (b) hodograph for 
Case SD1: , ensemble average over three independent 
realizations for time sequence f = 0.075,0.150, 0.225, 0.300, 
0.375, and 0.750; , laminar Stokes solution at f=0.75; 
 plane average over single realization at f=1.73; time 
normalized by channel half-width and surface friction veloc- 
ity from initial field 

wise velocity profile is shown in Figure la. The solid curves 
represent an average over planes parallel to the walls and over 
three independent realizations beginning from three different 
initial fields. The dotted curve illustrates the Stokes solution at 
the time corresponding to the last ensemble-averaged result 
(/ = 0.750). Even at this last time, the laminar and turbulent 
profiles are not drastically different; at t = 0.375 the agreement 
between the Stokes solution (not shown), and the Case SD1 
profile is significantly better—a consequence of the slow devel- 
opment of the spanwise Reynolds stress ÜV. The dashed curve 
in Figure la shows the spanwise velocity at / = 1.73. As the polar 
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Figure 2 History of (a) mean streamwise wall shear stress 
(normalized by initial value) and (b) maximum q2 for Case 
SD1: symbols denote planar averages from three indepen- 
dent realizations 
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Figure 3    Profiles of (a) q2 and (b) structure parameter for 
Case SD1: . f=0; , f=0.075;  f=0.150;  
—, t= 0.225; ——, f= 0.300; structure parameter a,- 
IGTV)2 + (Vw')2Y/2/q2; ensemble average over three realiza- 
tions 

velocity plot in Figure lb indicates (because the direction of the 
mean velocity is very nearly constant with distance from the 
surface) the flow at this time is to a good approximation collat- 
eral. The t = 1.73 field is used as initial conditions for some of 
the cases described below (see Table 1). 

Adding a spanwise component to the shear at the wall causes 
a reduction in the streamwise component, as Figure 2a shows. 
The streamwise wall shear drops to a minimum of about 90% of 
its initial value before the added shear leads to its eventual 
growth. (Simulations other than those presented here indicate 
that imposing a larger shear produces a larger wall-shear reduc- 
tion than found for Case SD1.) The drop in turbulent kinetic 
energy (l/2)<?2 = (1/2)SX> associated with the wall-shear de- 
crease can be seen in Figure 3a. The effect spreads away from 
the wall in time, as more and more of the layer experiences a 
drop in q2 as time passes. A trace of the history of the near-wall 
peak of q2 is presented in Figure 2b. Its behavior is similar to 
that of the wall shear, in that an initial reduction precedes 
growth to greater than initial values. The maximum q2 begins to 
grow sooner than the wall shear does, however. 

Figure 3b shows how the relationship between the compo- 
nents of the Reynolds stress tensor is altered by the spanwise 

shear: the structure parameter a, is significantly reduced. This 
reduction, which is a central feature of nonequilibrium 3DBLs, 
implies that for the shear-driven case the decrease in magnitude 
of the lateral shear stress is even more rapid than that of the 
turbulent kinetic energy. Note that the shear-induced reduction 
of both a, and q2 propagates away from the wall in time. The 
finite lag between the angles of the mean shear and shear stress 
(Figure 4a) is such that, while they eventually coincide as the 
collateral state is approached, initially the two angles differ by 
almost 40°. The shear always "leads" the stress so that 
arctan[(övv/ay)/(aü/a>')]-arctan(t7F/i717) remains positive. 
A more straightforward demonstration of the difficulty associ- 
ated with using a sealer eddy-viscosity to model this flow is 
presented in Figure 4b, which illustrates the evolution of the 
ratio of the spanwise to streamwise eddy-viscosity; only after q- 
begins to grow (cf. Figures 2b and 4b) does this ratio begin to 
approach one. 

The spatial structure of the turbulence is also modified by the 
moving wall. We find that the smallest scales of motion adjust 
most rapidly to changes in mean flow conditions. This observa- 
tion, which was previously made by Sendstad and Moin (1992) in 
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Figure 4 Profiles of (a) difference between angles of mean 
shear and shear stress and (b) ratio of spanwise to stream- 
wise eddy-viscosity for Case SD1: , f = 1.73; other sym- 
bols as in Figure 3. Lag angle, X = arctan[(dfi?/dy)/(dZ7/dy)] - 
arctan(v'w'/uV); eddy-viscosity ratio, £=1/w'/{dw/dy)yiu'v'/ 
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their 3DBL DNS study, is supported by the two-dimensional 
energy spectra shown in Figure 5. These spectra also indicate the 
numerical fidelity of the DNS results, over the entire 2-D-to-col- 
lateral flow range. (The same conclusion is also reached when 
the one-dimensional (1-D) spectra (not shown here) are exam- 
ined.) At this y-location (which in wall units initially corresponds 
to y+=15), the high-level contours at low wavenumbers are 
"turned" more slowly than are their low-level high-wave number 
counterparts. The enstrophy profiles in Figure 6a also imply that 
at this location (y = -0.92) the smaller scales initially become 
more energetic. Part of the previously noted drop in the peak q1 

—in addition to being the result of reduced production caused by 
lower mean shear and turbulent shear stress (Figures 2a and 3b) 
—is, therefore, due to an increase in the rate of turbulent kinetic 
energy dissipation e. Near the wall, however, the vorticity fluctu- 
ations weaken in time, indicating that here the energy at smaller 
scales (and, hence, the dissipation rate) is diminished. The time- 
dependent influence of the spanwise shear on the location of the 
maximum enstrophy can be accounted for to some degree by 
using the similarity variable of the laminar Stokes solution, 

T)=y*/2(v*i*)l/2 (using the * superscript to denote dimen- 
sional variables, with v* the kinematic viscosity, and y* = 8* + 
y*), to rescale the wall-normal coordinate. When this is done 
(Figure 6b) the enstrophy maximum is found for the times 
considered to remain near -q = 1. 

More instantaneous structural information is available in 
Figure 7, which shows contours of wall-normal vorticity in x-z 
planes just above the moving wall from one of the Case SD1 
realizations, revealing the effect of the imposed spanwise shear 
upon the streaks. They are first weakened and "torn" into 
smaller structures; later they become stronger and more elon- 
gated as they realign in the collateral flow direction. 

A complication in the analysis of Case SD1 is the time-depen- 
dent nature of the imposed mean spanwise shear. Although some 
of the time-dependence can be removed by using laminar theory, 
as in Figure 6b, the fact that dw/dy varies in both y and / 
makes it difficult to determine the mechanisms responsible for, 
for example, the turbulent drag reduction, because different 
near-wall structures exist at different y+ locations. We have, 
therefore, performed a series of runs using "synthetic" time-in- 
dependent mean spanwise velocities: a uniform spanwise shear 
dw/dy of equal magnitude is applied over various regions, and 
held constant in time. Because we are primarily interested in the 
initial response of the turbulence to the applied shear, we do not 
allow the imposed initial w profile to change in time under the 
influence of viscosity, and the turbulence; dw/dy is held fixed to 
make comparisons more straightforward than they would be if w 
evolved naturally. Because our attention is upon near-wall behav- 
ior, it is possible to specify a lower-Reynolds number for these 
runs than was used to obtain the Case SD1 results described 
above. Instead of 180, here the initial ReT is 112. This greatly 
reduces the computational expense, because at Re7 = 112 only 
(nx,ny,n,) = (32,65,32) collocation points are required, which 
allows us to explore a wider parameter range for a given amount 
of CPU time than would be possible at higher-Reynolds num- 
bers. (We have also used the "minimal channel" geometry 
(Jimenez and Moin 1991) to investigate the effect of constant 
spanwise shear upon 2-D channel flow. However, because in the 
present study we choose to impose dw/dy at locations fairly far 
away from the walls, those results are not presented here, in 
order to avoid uncertainties that might be present in minimal- 
channel statistics from far-wall regions.) 

Three series of constant-shear simulations were made; these 
are denoted by a CSD prefix and summarized in Table 2. Each 
series uses a distinct value of constant dw/dy (either 50, 200, or 
800% of the initial mean streamwise wall shear), and contains 
eight individual runs, which are defined by the height h above 
the wall over which dw/dy is imposed. The region of uniform 
shear extends from the surface to h+', measured in wall-units of 
the initial 2-D field, which varies from 5 to 40 in increments of 5. . 
To prevent a discontinuity in the iv profile, above 1 - \y\ = h the 
spanwise shear drops to zero as a Gaussian that falls to 1% of its 
nominal value over five initial wall units. The shear is applied 
over both sides of the channel, so that both walls are set in 
motion in the same direction at a constant spanwise velocity 
proportional to h dw/dy. 

A comparison of mean streamwise surface drag histories is 
shown in Figure 8; a reduction with time is found in all instances, 
with the drop proportional to the magnitude of the applied shear 
(cf. Figure 8a, b, and c). The weakest effect occurs when the 
shear is imposed between y£ = 0 and 5 (y£ is the wall-normal 
coordinate in wall-units of the initial field), with a cumulative 
drag reduction as the depth of the sheared region increases. 
Note, however, that once the shear extends beyond yjj = 25 for 
the weakest shear (Series CSD1; Figure 8a), and y + ~ 15 for the 
largest dw/dy (Series CSD3; Figure 8c), further increases in h + 
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Figure 5 Two-dimensional energy spectra at y„=1+y=0.08 (y + = 15) at (a) f=0, (b) 0.14, (c) 0.29. and (d) 1.73 for one 
realization of Case SD1: contours indicate constant values, in intervals of -1.8, of logarithm of spectra, normalized by 
maximum value at each time; horizontal and vertical axes are spanwise and streamwise wave numbers, respectively, with 

mean mode at center 

y n 
Figure 6 Vorticity fluctuation profiles, normalized by initial 
wall value, versus (a) y and (b) i\ for Case SD1: symbols as 
in Figure 3 

do not lead to a significant change in the rate of drag decrease. 
Moreover, the greatest "jump" in the drag reduction occurs 
when h+ moves from yj = 10 to 15 for the weak shear runs 
(CSD1), and from h+=5 to 10 for Series CSD3, for which 
dw/dy is largest. This indicates that the "optimal 
shearing"—that which most deeply disrupts the 2-D equilibrium 
state—is application of dw/dy to the region between y+ = 5 and 
15, with a tendency for the "critical region" to shift towards the 
lower limit as the spanwise shear increases. 

In the version of this paper presented at TSF-10, the upper 
limit of the range of maximum influence was found to be 

y+ = 10, not y* ~ 15, as it is here. This is because there instead of 
considering histories of mean surface shear stress, turbulent 
kinetic energy histories were analyzed. It was subsequently dis- 
covered that the development of the streamwise surface drag is a 
better measure of 3DBL behavior, because it is less sensitive 
than q2 to the magnitude of the applied spanwise shear; at very 
large shear rates, the surface drag and kinetic energy histories 
show opposite trends, with the former decreasing in time, while 
the latter experiences rapid growth. (Another, less significant, 
reason for the difference is that the (^-histories previously 
presented were not taken from the minimal-channel runs de- 
scribed earlier, as claimed, but from preliminary course-grid 
simulations; however, because results from the two runs were 
quite similar, the influence of this error was slight.) 

These constant-shear findings are perhaps related to the 
effect of an oscillating spanwise mean pressure gradient (or 
equivalent^ spanwise oscillating walls) upon turbulent boundary 
layers. Numerical (Jung et al. 1992) and experimental (Laadhari 
et al. 1994) studies have shown that maximum suppression of 
turbulence occurs when the spanwise oscillation period in wall 
units is about T* = 100. Because of the applicability of the 
laminar theory for the mean spanwise velocity for the oscillating 
wall flow (Jung et al.), a connection can be made between the 
T+= 100 optimum, and the above observation that shear below 

_y+= 15 is most effective: at T+= 100 and y*= 15, the similarity 
variable t, for the laminar solution, which can be written as 
£ =_y

+(7r)'/2/(r+)i/2i gjves 5/(^)1/2 = 1.5, which is close to the 
effective depth of the boundary layer created by the oscillating 
wall, as shown in Figure 9. 

Finally, we comment on the significance of the present results 
for theories regarding the structural mechanisms responsible for 

338 Int. J. Heat and Fluid Flow, Vol. 17, No. 3, June 1996 



Figure 7 Contours of wall-normal vorticity on (x, zj-planes 
at yw = 1 + y=0.003 {/;+= 0.5) at (a) f=0, (b) 0.075, (c) 0.150, 
(d) 0.225, and (3) 0.300 for one realization of Case SD1: , 
GO > 0; contour interval = 1; flow at centerline from left to 
right; spanwise wall motion from top to bottom; planes 
represent full flow domain 

the drag reduction in shear-driven 3DBLs. One suggestion is that 
the reduction is due to the spanwise shear directly modifying the 
near-wall quasi-streamwise vortices, thereby weakening the en- 
ergy production cycle (Eaton 1995). Although the present results 
are not inconsistent with this theory, because on average, the 
quasi-streamwise vortices are found near y+ = 20 (which is just 
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Table 2    Constant spanwise-shear runs 

Series 
dw n. 

CSD1 
CSD2 
CSD3 

0.5 
2.0 
8.0 

above the "optimal shearing" region of 5 <>>+ < 15), the greatest 
influence of shear-driven three-dimensionality appears to be due 
to modification of the "bottoms of the vortices, the "tops of 
the streaks, or of the interaction between the two. We also note 
that applying a spanwise shear in the region below y+ = 5 pro- 
duces a smaller drag reduction than when dvv/dv is imposed 
between _y+=15 and 25 (Figure 8), which suggests that the 
weakening and "shredding" of the streaky structure observed 
very near the wall at y*. = 0.5 (Figure 7) is more a symptom of 
the tree-dimensionality than an important part of the dynamics. 

Stationary wall (ws=0) 

The other type of shear-driven 3DBL considered here also has 
an analog in the rotating cylinder experiments: by suddenly 
stopping the spanwise-moving wall in the channel after a collat- 
eral state has developed, an effect comparable to passing from 
the rotating to stationary section in the experiments is produced. 
The initial condition for this stopped-wall run, Case SD2, is 
obtained from Case SD1 at t = 1.73. As can be seen from the 

1.00 

R? 
3 

0.99 
0.04 

1.00 

3 

2 
^_3 

ft? 

0.99 
0.01 0.02 0.01 

t t 
Figure 8   History of mean streamwise wall shear stress, 
normalized by initial value, for constant spanwise-shear runs. 
Series (a) CSD1, (b) CSD2 and (c) CSD3: , h+=5; — - 
_   /,+=l0; , /?+=15; —, h+=20;  , /?+=25; 
—.-—, h+=30; —, h+=35; —, /J+=40; re- 
sults at each time averaged over both walls 
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3i 

w/vf, 

Figure 9   Stokes  oscillating  flat-plate  solution: 
quence over half period in 30° increments 

time  se- 

t = 1.73 results in the Case SD1 hodograph (Figure lb) and the 
kinetic energy spectra (Figure 5d), the layer above the moving 
wall is effectively 2-D at this time. Thus, when the coordinate 
system coincides with the angle of the mean shear at the surface 
(26°), the resulting mean "spanwise" velocity has no >'-variation 
(Figure 10). Consequently, the only difference between subject- 
ing a 2-D boundary layer to an impulsive spanwise wall velocity 
and suddenly stopping the wall beneath a collateral boundary 
layer is that in the latter case the imposed wall shear has both a 
downstream and cross-stream component, the relative strengths 
of which depend upon the collateral flow angle. Because the 
applied downstream shear and the existing collateral surface 
shear are aligned and of opposite sign, the Case SD2 energy-drop 
(Figure 11) is due to both the cross-flow effect discussed above 
and also a straightforward reduction in the usual 2-D - u'v'dü/ 
dy production. However, although both the downstream and 
cross-stream components act to reduce the turbulent energy, 
their influence upon the flow structure is fundamentally differ- 
ent. Results from Case SD3, a run for which the lower channel 
wall is moved solely in the downstream direction, show, for 

t 

Figure 11    History of maximum q2 for Case SD2 

example, that the vorticity fluctuations are everywhere dimin- 
ished by the streamwise shear (Figure 12), while the cross-flow 
(see Figure 6a) leads to an increase at some locations and a 
decrease at others. 

Results: transversely strained cases 

We conclude with some preliminary results from the strained 
channel simulations, Cases TS1 and TS2. The strain rate S = 
|dt//djc| used for these runs is such that at the channel centerline 
the nondimensional strain-rate parameter Sq2/e ~ 160; this value 
of S is 48% of the mean shear at the surface, [(aü/fly)^. + 
(öw/dy)iy/l, of the initial collateral flow (Case TS1 at t = 1.73), 
and therefore represents a very rapid deformation. Note the 
opposite signs of dU/dx for the two simulations. If the collateral 
initial state were exactly aligned at 45° to the *-axis, the applied 
dU/dx= -dW/dz strain would produce a pure irrotational 
skewing of the flow (i.e., in downstream coordinates the only 
nonzero terms of the strain rate would be the off-diagonal 
components dU/dz = dl^/dx, as if a pressure gradient were 
acting at a right angle to the mean streamlines), and the only 
difference between Cases TS1 and TS2 would be that one would 
turn the flow (in time) to the right, and the other to the left, 

13 
13" 

-1.0      -0.8 

y 
Figure 10 Mean velocity profiles in coordinate system 
aligned with direction of mean shear angle at the surface, 
for Case SD2 at f=0: ——, V; , w 

-1.00 -0.95 -0.90 

y 

-0.85 0.80 

Figure 12   Vorticity fluctuation profiles, normalized by initial 
wall value, for Case SD3; symbols as in Figure 3 
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e 
13 

-1.0 -0.5 

«s/(Us)e 
Figure 13   Mean velocity hodograph for Cases TS1 and TS2: 
 , Sf=0; , CaseTSI at Sf=0.25; , Case TS2 at 
Sf-0.25; velocity components parallel Vs and normal ün to 
local coordinates aligned with current direction of mean 
skewing,  normalized by parallel  component at centerline 

<5.>c 

respectively. However, because the collateral flow angle is 26°, 
the opposite signs of dU/dx correspond to a mean deceleration 
of the boundary layer in the downstream direction for Case TS1 
and an acceleration for Case TS2. 

Mean velocity hodographs are shown in Figure 13. The veloc- 
ity components are measured with respect to the coordinate 
system defined by the turning angle of the irrotational skewing: 
the downstream direction is at 45° + a clockwise from the x-axis, 
where the effective turning angle a = arctan(-tdU/dx). This 
choice allows us to check the validity of a generalized Squire- 
Winter-Hawthorne relationship for the mean velocity (Bradshaw 
1987), derived by assuming that in the outer layer the evolution 
of the mean vorticity is simply given by skewing of vortex lines in 
the x-z plane (and taking into account that initially the mean 
vorticity has a component parallel to the pure-skewing direction 
of 45° to the x-axis). Thus, one can obtain that for the coordi- 
nate system used in Figure 13, the mean velocity should satisfy 
wn = -tan(6 + 2ct)(«s - (äs)c), where tan 6 = tan ß cos2a/(l + 
tan ß sin2a), and ß = 45-26 = 19° is the difference between 
the collateral flow and pure skewing directions. Measured clock- 
wise from the horizontal axis, the predicted angles for Cases TS1 
and TS2 are 43 and - 8°, respectively, both of which are fairly 
close to the values observed in Figure 13. The behavior of q- 
(Figure 14a), and therefore, a, (Figure 14b) depends upon 
whether the effect of the mean strain represents that of an 
adverse or favorable pressure gradient. The kinetic energy in- 
creases, and structure parameter decreases, for the 
decelerating-strain flow, Case TS1; for Case TS2 the opposite 
occurs. 

Conclusions 

A DNS study of nonequilibrium 3DBLs indicates that for the 
shear-driven case, the greatest decrease in mean turbulent drag 
is obtained when a spanwise shear is applied in the region 
between 5 <y+ < 15; it is postulated that this result is related to 
the observation that maximum turbulence suppression occurs for 
boundary layers above oscillating surfaces when the spanwise- 
oscillation period is about T+ = 100. The qualitatively different 
influence of suddenly applied spanwise and streamwise wall 
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Figure 14    Profiles of (a) q2 and (b) structure parameter for 
Cases TS1 and TS2; symbols as in Figure 13 

shears on, for example, enstrophy profiles implies that nonequi- 
librium boundary layers produced by an abrupt mean-flow change 
are sensitive to the type—and not just the suddenness—of that 
change. Investigation of the pressure-driven flow using strained- 
channel simulations has begun to yield insight into differences 
between the two main versions of 3DBLs. In the future, we plan 
to continue this effort by considering less-rapid strain rates than 
that imposed here and utilize initial fields aligned at various 
orientations in order to isolate adverse pressure gradient and 
pure-skewing effects. An attempt will also be made to determine 
the Reynolds number dependence of our conclusions regarding 
the shear-driven 3DBL by performing large-eddy simulations of 
the moving-wall flow. 
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